Quantum Leap 量子大躍進-空中英語教室
2025/04/13 22:10
瀏覽45
迴響0
推薦0
引用0
Quantum Leap 量子大躍進!(上)
Understanding the Basics of Quantum Computers
空中英語教室 20250411
(使用CapCut 自動字幕功能)
只要修正英文文法,保留原文,同時將簡體中文修改為繁體中文
Hey friends, welcome back!
My name is John, and today is a great day to learn something new.
So let’s do that together. I’m David, and you are joining us here on Studio Classroom.
Today we’re talking about a quantum leap.
"Quantum" might not be a word you’ve heard before, but it is changing the way scientists are thinking.
Do you like science?
I hope so, because we’re talking about computers today.
David, I’ve got a question for you.
All right.
I might already know the answer, but—do you ever wish you had a faster computer?
Let me tell you something about faster computers. A real great life hack, as you might call it:
If you have an old computer and you want it to go faster, then just install a solid-state hard drive, or an SSD.
They’re becoming more popular and much cheaper these days.
I did that on an old laptop—it runs so much faster. Give it a new hard drive. Cool!
Or—you could just put your computer on a really fast train, like the high-speed rail, and it will be the fastest computer you’ve ever seen.
Well, friends, it’s time to get into the first section of our reading.
So let’s do that together.
Quantum Leap
Understanding the Basics of Quantum Computers
Imagine you’re holding a coin.
Normally, you’d see it as either heads or tails.
But what if you flipped that coin into the air?
As long as the coin is in the air, it’s neither heads nor tails.
In fact, you could say that it is both heads and tails at the same time.
That may sound abstract, but it’s one of the key ideas behind quantum computing.
And never has computing seen such a revolutionary leap as with quantum technology.
Hi, I’m Jack.
今天的 Usage Tip 是將否定副詞 never 置於句首的句型。
這種用法可以增強否定語氣,強調某件事從未發生。
不過要注意,後面必須以倒裝結構呈現喔,也就是 be 動詞 + 主詞 或者是 助動詞 + 主詞 + 動詞。但動詞會隨著助動詞的形態而有所變化。
譬如課文這句:
And never has computing seen such a revolutionary leap as with quantum technology.
這句中的助動詞是 has,所以後面的動詞使用過去分詞 seen。
如果助動詞是 do 或 does,那就會接原形動詞了。
來看例句:
Never does the politician put his words into practice.
政客從來沒有把他說的話付諸實踐。
Well friends, we’re talking about a quantum leap today. We read together:
Understanding the basics of quantum computers.
All right friends—"quantum" is a word that means the smallest unit or piece of something.
So typically, when we’re talking about something being quantum, it means it’s really, really, really, really small, right?
That’s right!
And it’s become a very hot topic for a lot of scientists—especially physicists, actually.
All right friends, we read here:
Imagine you’re holding a coin. Normally, you’d see it as either heads or tails.
But what if you flipped that coin into the air?
Now, there are two terms here: heads and tails. What are we talking about?
When we talk about "heads or tails," we’re talking about the front or back of the coin.
Okay, so the heads would be the side with the president’s face, or something like that, right?
And the tails—the tail side—normally has like the seal of the country on it.
There are different kinds of coins. But if you flip a coin, it means you’re spinning it really quickly—so it’s actually spinning around.
Yeah, a lot of people will use this method to make decisions sometimes.
"Oh, should I get strawberry ice cream or chocolate ice cream? I like them both!"
"I’ll flip a coin!"
And it’s a good way to make decisions between two people, if both sides have a good case.
You say, "Let’s just flip a coin," and someone picks heads or tails.
So normally with a coin flip, there are two options. But we read:
As long as the coin is in the air, it’s neither heads nor tails.
In fact, you could say it’s both heads and tails at the same time, because it’s spinning.
Okay, and then—what do we read on here?
Well, we see that this idea may sound abstract, but it’s actually one of the key concepts behind how quantum computing works.
There’s a really great word in there to know—abstract.
If something is abstract, it means it’s not quite real, but it exists as an idea or in the imagination.
It’s actually really important to be able to think in the abstract so that you can plan things.
And scientists often have to think about things that are not real, so they can figure out how to get there.
That’s right—how to make them possible. Sort of like dreaming big, so you can go big.
Exactly. Now, today we’re talking about computers and technology—that’s always changing.
We see a really fun word here: computing.
We read it’s one of the key ideas behind quantum computing.
"Computing" is using computers in general.
But can you use that in another sentence?
Yes. You can also use it as a verb:
"My computer is computing so many different things that it’s starting to slow down."
"Computing" is a word that I’ve often used to mean just thinking, as well, right?
You could use it in kind of a fun way to say,
"Wow, that idea did not compute"—like I wasn’t able to understand that idea.
So if someone is thinking deeply, you can say,
"Oh, they’re still computing"—and it’s kind of a fun way to describe that.
We also have our Usage Tip here, don’t we David?
And never has computing seen such a revolutionary leap as with quantum technology.
Okay, the word there—revolutionary—means what?
Something is revolutionary if it has the potential to change everything.
You know, computers did change everything, didn’t they?
They sure did.
And then as computers became smaller, we could carry them around in our pockets.
Society completely changed.
So what is the next quantum leap?
Well, we’ll have to find out together. Let’s do that together.
Quantum Leap
Before we begin our quantum journey,
let’s clear up a common misunderstanding:
One should not think of quantum computers as just faster, more powerful versions of classical computers.
Rather, they possess an architecture which makes them perfect for solving problems
that would be impractical or impossible for a classical computer.
To use a transportation analogy:
Classical to quantum is not like going from a sports car to a race car—
It’s more like going from a land vehicle to a submarine,
enabling us to explore our world in a deeper way.
我們來看 analogy 這個名詞,意思是比擬或類比。
來看例句:
One analogy for marriage is a beautiful garden that needs attention and care.
對婚姻的一個比喻是:它是一座美麗的花園,需要關心和照顧。
或者是:
Ben says that a basketball game is like a dance performance, but I think it is a weak analogy because dancers are not trying to defeat each other.
Ben 說籃球比賽就像舞蹈表演,但我認為這個比喻不恰當,因為舞者並不想要打敗對方。
Analogy 的形容詞是 analogous,意思是類似的。
比如:
In some ways, learning to read Chinese characters is analogous to solving a puzzle by looking for clues and connections.
在某些方面,學習閱讀中文有點像透過尋找線索和聯想來解答謎題。
It’s quantum time, friends!
And before we begin our quantum journey, let’s clear up a common misunderstanding.
We read that in our lesson today—a misunderstanding.
What is that?
A misunderstanding is a moment where you do not understand something that someone said,
or even more specifically, you think that they said A, but they actually said B.
For example, you might say,
“Oh, she and I had a misunderstanding, so I need to talk to her to clear things up.”
Oh! If you ever see mis- before a word, it kind of means not or wrong, right?
For example, the word mistake—a “take” can be like an action,
so a mistake is the wrong action.
You’re still doing something, but just in the wrong way.
So what is this misunderstanding people have when we talk about quantum computers?
A lot of people think the next big thing in computers is just being a faster computer
that has more powerful graphics or something.
But that’s actually not the best way to think of quantum computers.
In fact, it’s a little bit misleading or mistaken.
Okay, so we read:
People think quantum computers are just faster, more powerful versions of classical computers.
Classical means the historic way things are done.
But they are different because of their shape.
Well, when we talk about classical computers,
we’re specifically talking about a certain way that they compute.
They use zeros and ones—those are classical computers.
But quantum computers use something different.
They use something called a qubit.
And a qubit is actually something we’ll talk about in the next paragraph.
But to give you a good kind of transportation analogy,
they are kind of more like going from a sports car to a submarine,
because the architecture of quantum computers is very different.
And there are some things that actually would not even be very useful to do with it.
Cool! So this is because of their architecture.
Architecture means the way something is designed and shaped.
Like you said, classical computers are either yes or no—they’re either 1 or 0.
But these quantum computers have a different architecture,
and it’s because they’re using actual atoms, which are shaped differently.
Those are those really little guys with the spinning or moving electrons.
And we’ll learn about what that word qubits means.
That’s a very cool word for you to add to your science vocabulary.
We have this word here too—analogy—that you learned from your Language Lab.
It’s a great way of describing something.
Like a race car and a submarine—that’s an analogy for a classical computer and a quantum computer.
But right here, it’s more like going from a land vehicle to a submarine,
enabling us to explore our world in a deeper way.
What does that word enable mean?
It means that it makes it possible for us to do something.
If you’re enabled to do something, it’s possible for you to do it.
So, you would not use a quantum computer to check your email.
It probably would not do a very good job at checking your email—
at least not as well as just using your phone or a regular computer would.
But there are other things that quantum computers are perfect for,
and that’s what makes them special or different.
Cool! Well, friends, when we’re talking about things that are quantum,
we’re talking about the very smallest things we can see.
There’s a word I’d love to teach—it’s called the atom.
A-T-O-M.
It comes from an old word—
from, I think, Greek—that means the smallest unit that cannot be divided.
But an atom is… well, what is an atom?
An atom, like you described, is kind of one of the smallest pieces of matter that can exist.
Everything is made of different kinds of atoms.
And we know a lot about atoms—but not everything.
Atoms are very hard to track.
It feels like they’re doing a lot of different things at the same time.
So what if we could connect our computers to the power of an atom?
Could we understand more?
Maybe so.
Let’s go to our Info Cloud to practice some English terms,
and then we’ll be back to talk about quantum computers.
Hello friends, welcome to Info Cloud!
Hey Rex, have you ever been in a situation where you felt completely clueless about something?
Like when someone’s talking about something you don’t understand at all?
Yes, exactly.
Oh, definitely. I hate being in the dark like that.
Hmm, let’s talk about that phrase, Rex.
What does in the dark mean?
Well, like you said,
it describes being unaware or not having the information you need to understand what is happening.
Ah! So if someone tells me they’re in the dark about a surprise party,
it means they have no idea that the party is going to happen, right?
It’s like being in a dark room—you can’t see anything and you don’t know what’s happening.
It’s a fitting metaphor for being uninformed.
You know, Rex, a common phrase with the opposite meaning is in the know.
So being in the dark means missing out on the facts,
while being in the know means you’re fully informed.
Exactly!
And now our friends at home are in the know about the meaning of the phrase in the dark.
in the dark 茫然不知 <-> in the know 完全掌握
in the dark 茫然不知 <-> in the know 完全掌握
當一個人遇到完全不知所措的情況,你可以用 in the dark 來形容。
In the dark 就是在黑暗中,好像你什麼都看不見,也不知道發生了什麼事情。
這是一個很貼切的比喻,形容的是缺乏資訊、完全不了解狀況。
Sara was in the dark about the surprise party.
Sara 對於那場驚喜派對渾然不知。
In the dark 的相反就是 in the know。
Know 就是知道,in the know 就是處於資訊充足的情況中,完全了解狀況。
這就是今天的 Evercloud。我們下次雲端見!
Quantum Leap
Quantum Leap
Classical computers process data in binary bits, which can represent either one or zero,
the same way a coin can be either heads or tails.
Quantum computers, however, use qubits, or quantum bits,
which can exist in a state called superposition.
In this state, a qubit can be both zero and one at the same time.
接下來看 binary 這個形容詞,意思是二元的,或是由兩個部分構成的。
來看例句:
Our solar system is not a binary system because our sun does not orbit around a second star.
我們的太陽系不是雙星系統,因為太陽沒有繞著第二顆恆星運行。
或者是:
When you ask a question with the binary choice of yes or no, it doesn’t encourage more conversation.
當你提出只有「是」或「否」的二元選擇問題時,它不會促進更多的對話。
Binary 也可以當名詞,表示二元對立。
譬如:
The binary of good versus evil can’t fully explain the complexity of war.
善與惡的二元論無法完全解釋戰爭的複雜性。
Alright friends, we’re talking about classical computers versus quantum, or future, computers.
Classical computers are the computers we use today, right?
And they use something called binary bits to process data.
David, this word process is a verb we often use for computers.
What does it mean?
Process is a great word. It can be used to talk about food—like processed foods.
It can also be used to talk about when you’re trying to understand something—like you’re processing an idea.
It just means that you’re taking something raw and then doing something to it
in order to give a more complete output.
Cool. And data means information, typically information that is put through a computer.
So here, computers are processing the data,
trying to understand it and then put it in a way that humans can hopefully use.
Right. Now they process this data with binary bits.
Bi- means two, right? So if something is binary, it’s either a zero or a one.
You learned that in the Language Lab.
What does a bit mean?
A bit is sort of like the digital form of an atom, actually.
A bit is the smallest unit of data.
Cool. Now if you’re interested in semiconductors—which you should be—
bits are very important.
And scientists are trying to squeeze as many bits as possible into little things
called microchips or semiconductors.
So quantum computers would be a huge leap forward.
We read that these binary bits can represent either zero or one,
just like a coin can be either heads or tails.
But what do quantum computers do?
Well, similar to our coin analogy that we made in the first part of our lesson,
a quantum qubit is able to represent both zero and one at the same time.
Okay, so qubit is a word—I think it… well, most words are made up, I guess—
but it combines the word quantum and the word bit, right?
Okay. So a qubit is a fun word meaning a quantum piece of information,
and it can exist in a state called superposition.
If you break down that word:
super means above or over, and position means the place or the location.
But superposition is when one thing is above another—or happening at the same time.
For example:
I could say, "My hands are in superposition."
They’re in the same spot, but they’re both there at the same time.
Mmm-hmm. That’s right.
And superposition is the most important concept that we’ll cover when talking about how quantum computers work.
Well friends, in superposition, things can be zero and one at the same time.
At the same time is a great phrase.
It means two things are happening simultaneously, or together in time.
Well, now it’s that time for our Fun Fact!
Hello, Fact Friends!
I am Detective Ernest Finder, and I have a fun fact about quantum computers for you today.
Did you know—it is really, really hard to use a quantum computer?
One reason is because it is very complicated.
Another reason is because the temperature cannot be too high, or it won’t work.
Another reason is—there isn’t a real, real quantum computer out there yet!
Maybe there will be one you can use someday.
And that is today’s Fun Fact.
Well friends, we’re talking about the future of technology—
and that means the future of you and me.
David, I’ve got a topic I need to talk about. Question—are you ready?
I’m ready, David!
Do you think quantum computers will change the world, or are they just another tech fad?
A fad is a great word—it just means something that’s temporarily popular.
I think the real thing will change the world.
But a lot of the language around it is probably just a fad.
We’ll have to wait and see.
You’ll have to join us tomorrow.
That’s all the time we have for today.
I’m John.
I’m David.
We’ll see you next time—right here on Studio Classroom.
<<<deepseek翻譯>>>
嘿,朋友們,歡迎回來!
我是約翰,今天是學習新事物的好日子。
讓我們一起來學習吧。我是大衛,你正在收聽的是《空中英語教室》。
今天我們要談論的是「量子躍遷」。
「量子」這個詞你可能沒聽過,但它正在改變科學家的思考方式。
你喜歡科學嗎?
希望你喜歡,因為今天我們要討論電腦。
大衛,我有個問題要問你。
好啊。
我可能已經知道答案了,不過——你曾經希望擁有更快的電腦嗎?
讓我告訴你一些關於更快電腦的事。這可以說是真正實用的生活妙招:
如果你有一台舊電腦,想讓它跑得更快,那就安裝固態硬碟(SSD)吧。
現在它們越來越普及,價格也便宜許多。
我在一台舊筆電上這麼做——速度提升非常多。換個新硬碟就行。酷!
或者——你可以直接把電腦放在高速列車上,這樣它就會成為你見過最快的電腦了。
好了朋友們,現在該進入我們閱讀的第一部分了。
讓我們一起來看看。
量子躍遷
理解量子電腦的基礎
想像你手中握著一枚硬幣。
通常,你會看到它正面或反面朝上。
但如果你把硬幣拋向空中呢?
只要硬幣還在空中,它就既不是正面也不是反面。
事實上,你可以說它同時是正面也是反面。
這聽起來可能很抽象,但這正是量子運算背後的關鍵概念之一。
而運算技術從未見過像量子技術這樣的革命性躍進。
嗨,我是傑克。
今天的用法小提示是將否定副詞 never 放在句首的句型。
這種用法可以加強否定語氣,強調某件事從未發生。
但要注意,後面必須用倒裝結構,也就是 be 動詞 + 主詞 或 助動詞 + 主詞 + 動詞。動詞會隨著助動詞的形式變化。
例如課文中的句子:
運算技術從未見過像量子技術這樣的革命性躍進。
這句中的助動詞是 has,所以後面用過去分詞 seen。
如果助動詞是 do 或 does,就會接原形動詞。
來看例句:
政客從來沒有把他說的話付諸實踐。
朋友們,我們今天談論的是量子躍遷。我們一起讀到:
理解量子電腦的基礎。
好了朋友們——「量子」這個詞指的是某物的最小單位。
所以通常當我們說某物是量子的,意思就是它非常、非常、非常小,對吧?
沒錯!
這已經成為許多科學家——特別是物理學家——的熱門話題。
朋友們,我們在這裡讀到:
想像你手中握著一枚硬幣。通常,你會看到它正面或反面朝上。
但如果你把硬幣拋向空中呢?
這裡有兩個術語:heads 和 tails。我們在說什麼?
當我們說「heads or tails」,指的是硬幣的正面或反面。
好的,heads 是有總統頭像的那一面,對吧?
而 tails——反面——通常有國徽之類的圖案。
硬幣有不同種類。但當你 flip a coin(拋硬幣),意思是讓它快速旋轉——所以它實際上是在空中翻轉。
是的,很多人會用這個方法來做決定。
「我該選草莓冰淇淋還是巧克力冰淇淋?兩種我都喜歡!」
「我來拋硬幣決定!」
這也是兩個人之間做決定的好方法,如果雙方都有道理。
你可以說:「我們拋硬幣吧」,然後一人選正面一人選反面。
通常拋硬幣有兩種結果。但我們讀到:
只要硬幣還在空中,它就既不是正面也不是反面。
事實上,你可以說它同時是正面也是反面,因為它正在旋轉。
好的,接著——我們這裡讀到什麼?
我們看到這個概念聽起來可能很抽象,但它實際上是量子運算工作原理的關鍵概念之一。
這裡有個很棒的字值得認識——abstract(抽象的)。
如果某物是抽象的,意味著它並非真實存在,而是作為一種概念或想像存在。
能夠進行抽象思考其實很重要,這樣你才能規劃事情。
科學家經常需要思考不真實的事物,這樣才能想辦法實現它們。
沒錯——讓它們成為可能。有點像敢做大夢,才能成就大事。
正是如此。今天我們談論的是電腦和科技——這總是在變化。
我們看到一個很有趣的字:computing(運算)。
我們讀到這是量子運算背後的關鍵概念之一。
「Computing」泛指使用電腦的行為。
但你能用這個字造另一個句子嗎?
可以。你也可以把它當動詞用:
「我的電腦正在運算太多東西,開始變慢了。」
「Computing」這個字我也常用來表示思考,對吧?
你可以用一種有趣的方式說:
「哇,那個想法我無法理解」——就像我無法理解那個點子。
所以如果有人正在深思,你可以說:
「噢,他還在運算中」——這是種有趣的描述方式。
我們這裡也有用法小提示,對吧大衛?
運算技術從未見過像量子技術這樣的革命性躍進。
好的,這裡的字——revolutionary(革命性的)——是什麼意思?
如果某事物有改變一切的潛力,它就是革命性的。
你知道,電腦確實改變了一切,不是嗎?
確實如此。
隨著電腦變小,我們能把它們放進口袋隨身攜帶。
社會完全改變了。
那麼下一個量子躍遷會是什麼?
嗯,我們必須一起來發現。讓我們一起來看看。
量子躍遷
在開始我們的量子之旅前,
先澄清一個常見的誤解:
人們不該認為量子電腦只是傳統電腦更快、更強大的版本。
相反地,它們的架構使其特別適合解決
對傳統電腦來說不切實際或不可能解決的問題。
用交通來比喻:
從傳統電腦到量子電腦,不是從跑車升級到賽車——
更像是從陸地交通工具變成潛水艇,
讓我們能以更深層的方式探索世界。
我們來看 analogy(比喻)這個名詞,意思是比擬或類比。
來看例句:
對婚姻的一個比喻是:它是一座美麗的花園,需要關心和照顧。
或者是:
Ben 說籃球比賽就像舞蹈表演,但我認為這個比喻不恰當,因為舞者並不想要打敗對方。
Analogy 的形容詞是 analogous,意思是類似的。
比如:
在某些方面,學習閱讀中文有點像透過尋找線索和聯想來解答謎題。
朋友們,量子時間到!
在開始我們的量子之旅前,先澄清一個常見的誤解。
我們今天課文中讀到——a misunderstanding(誤解)。
那是什麼?
誤解是指你沒有理解某人說的話,
或更確切地說,你以為他們說的是A,但實際上他們說的是B。
例如,你可能會說:
「噢,我和她之間有誤會,所以我需要和她談談來澄清。」
哦!如果你在一個字前面看到 mis-,通常表示否定或錯誤,對吧?
例如 mistake(錯誤)這個字——「take」可以是一個動作,
所以 mistake 就是錯誤的動作。
你仍然在做某事,只是方式不對。
那麼人們在談論量子電腦時有什麼誤解?
很多人認為電腦的下一個重大突破只是變得更快、
圖形處理更強大之類的。
但這其實不是思考量子電腦的最佳方式。
事實上,這有點誤導或錯誤。
好的,我們讀到:
人們認為量子電腦只是傳統電腦更快、更強大的版本。
Classical(傳統的)意指歷史上做事的方式。
但它們因為結構不同而有所差異。
當我們談論傳統電腦時,
我們特別指的是它們的運算方式。
它們使用0和1——這些是傳統電腦。
但量子電腦使用不同的東西。
它們使用稱為量子位元(qubit)的東西。
而量子位元實際上是我們下一段要討論的內容。
但用交通來做個好比喻,
它們更像是從跑車變成潛水艇,
因為量子電腦的架構非常不同。
而且有些事情用它來做甚至不太有用。
酷!這是因為它們的架構。
Architecture(架構)指的是某物的設計和形狀。
就像你說的,傳統電腦要嘛是要嘛否——它們要嘛是1要嘛是0。
但這些量子電腦有不同的架構,
這是因為它們使用實際的原子,而原子的形狀不同。
那些是帶著旋轉或移動電子的微小粒子。
我們將學習 qubit 這個字的意思。
這是你科學詞彙中很酷的新字。
我們這裡也有 analogy 這個字——你在語言實驗室學到的。
這是描述事物的好方法。
就像賽車和潛水艇——這是對傳統電腦和量子電腦的比喻。
但在這裡,更像是從陸地交通工具變成潛水艇,
讓我們能以更深層的方式探索世界。
enable(使能夠)這個字是什麼意思?
它意味著讓我們有可能做某事。
如果你被 enable 做某事,表示你有能力做到。
所以,你不會用量子電腦來檢查電子郵件。
它可能不太擅長檢查郵件——
至少不如你的手機或普通電腦做得好。
但量子電腦特別適合其他事情,
這正是它們與眾不同的地方。
酷!朋友們,當我們談論量子事物時,
我們談論的是我們能見到的最小事物。
我想教一個字——叫做 atom(原子)。
A-T-O-M。
它來自一個古老的詞——
我想是希臘文——意思是無法再分割的最小單位。
但原子是...嗯,什麼是原子?
原子,就像你描述的,是存在的最小物質單位之一。
萬物都由不同種類的原子組成。
我們對原子了解很多——但並非全部。
原子很難追蹤。
感覺它們同時在做許多不同的事情。
所以如果我們能將電腦與原子的力量連接呢?
我們能理解更多嗎?
或許可以。
讓我們進入資訊雲來練習一些英文術語,
然後再回來討論量子電腦。
朋友們大家好,歡迎來到資訊雲!
嘿雷克斯,你曾經遇過對某事完全摸不著頭緒的情況嗎?
就像有人談論你完全不懂的事情時?
沒錯,正是如此。
噢,當然。我討厭那種一無所知的感覺。
嗯,我們來談談這個片語,雷克斯。
in the dark 是什麼意思?
就像你說的,
它描述的是不知情或缺乏理解情況所需的資訊。
啊!所以如果有人告訴我他們對驚喜派對一無所知,
意思是他們完全不知道派對要舉行,對嗎?
就像在黑暗的房間裡——你什麼都看不見,也不知道發生了什麼。
這是對不知情的貼切比喻。
你知道嗎雷克斯,相反意思的常見片語是 in the know。
所以 in the dark 意味著不了解事實,
而 in the know 表示你完全掌握情況。
正是如此!
現在我們在家的朋友們都了解 in the dark 這個片語的意思了。
in the dark 茫然不知,<-> in the know 完全掌握
當一個人遇到完全不知所措的情況,你可以用 in the dark 來形容。
In the dark 就是在黑暗中,好像你什麼都看不見,也不知道發生了什麼事情。
這是一個很貼切的比喻,形容的是缺乏資訊、完全不了解狀況。
Sara 對於那場驚喜派對渾然不知。
In the dark 的相反就是 in the know。
Know 就是知道,in the know 就是處於資訊充足的情況中,完全了解狀況。
這就是今天的資訊雲。我們下次雲端見!
量子躍遷
傳統電腦以二進位位元處理資料,可以表示1或0,
就像硬幣可以是正面或反面。
然而,量子電腦使用量子位元(qubit),
能夠處於稱為「疊加」的狀態。
在這種狀態下,一個量子位元可以同時是0和1。
接下來看 binary(二元的)這個形容詞,意思是由兩個部分構成的。
來看例句:
我們的太陽系不是雙星系統,因為太陽沒有繞著第二顆恆星運行。
或者是:
當你提出只有「是」或「否」的二元選擇問題時,它不會促進更多的對話。
Binary 也可以當名詞,表示二元對立。
譬如:
善與惡的二元論無法完全解釋戰爭的複雜性。
好了朋友們,我們在討論傳統電腦與量子或未來電腦的比較。
傳統電腦就是我們現在使用的電腦,對吧?
它們使用稱為二進位位元的東西來處理資料。
大衛,process(處理)這個動詞我們常用在電腦上。
它是什麼意思?
Process 是個很棒的詞。可以用來談論食物——如加工食品(processed foods)。
也可以用來談論理解某事的過程——如你正在處理(processing)一個想法。
它只是意味著你接收原始的東西,然後進行某些操作,
以產出更完整的結果。
酷。而 data(資料)指的是資訊,通常是輸入電腦的資訊。
所以這裡,電腦正在處理資料,
試圖理解它,然後以人類希望的方式呈現。
沒錯。現在它們用二進位位元處理這些資料。
Bi- 意思是二,對吧?所以如果某物是二進位的,它要嘛是0要嘛是1。
你在語言實驗室學過這個。
bit(位元)是什麼意思?
位元其實有點像數位形式的原子。
位元是資料的最小單位。
酷。如果你對半導體感興趣——你應該感興趣——
位元非常重要。
科學家正試圖將盡可能多的位元塞進稱為微晶片或半導體的小東西裡。
所以量子電腦將是巨大的躍進。
我們讀到這些二進位位元可以表示0或1,
就像硬幣可以是正面或反面。
但量子電腦做什麼呢?
嗯,類似我們課文第一部分做的硬幣比喻,
量子位元能夠同時表示0和1。
好的,所以 qubit 這個字——我想它...嗯,大多數字其實都是人造的——
但它結合了 quantum(量子)和 bit(位元)這兩個字,對吧?
好的。所以 qubit 是個有趣的字,意思是量子資訊單位,
它能夠處於稱為 superposition(疊加)的狀態。
如果拆解這個字:
super 意思是上方或超越,position 意思是位置或地點。
但 superposition 是指一物位於另一物之上——或同時發生。
例如:
我可以說:「我的雙手處於疊加狀態。」
它們在同一個位置,但同時存在。
嗯。沒錯。
疊加是我們談論量子電腦工作原理時最重要的概念。
朋友們,在疊加狀態中,事物可以同時是0和1。
At the same time(同時)是個很棒的片語。
意思是兩件事同步發生,或在時間上一致。
現在是我們的趣味小知識時間!
嗨,知識之友!
我是偵探歐內斯特·芬德,今天為大家帶來關於量子電腦的趣味小知識。
你知道嗎——使用量子電腦真的非常、非常困難?
一個原因是它非常複雜。
另一個原因是溫度不能太高,否則它無法運作。
還有一個原因是——目前還沒有真正、真正的量子電腦問世!
也許將來有一天你會用到。
這就是今天的趣味小知識。
朋友們,我們談論的是科技的未來——
這意味著你和我的未來。
大衛,我有個話題要討論。問題——你準備好了嗎?
我準備好了,大衛!
你認為量子電腦會改變世界,還是只是另一個科技潮流?
fad(潮流)是個很棒的詞——它指的是一時流行的事物。
我認為真正的量子電腦會改變世界。
但圍繞它的許多言論可能只是潮流。
我們拭目以待。
明天請繼續收聽我們的節目。
今天的節目時間到此結束。
我是約翰。
我是大衛。
我們下次見——就在《空中英語教室》。
Quantum Leap 量子大躍進!(下)
Quantum Leap 量子大躍進!(下)
Understanding the Basics of Quantum Computers
空中英語教室 20250412
(使用CapCut 自動字幕功能)
只要修正英文文法,保留原文,同時將簡體中文修改為繁體中文
hey friends, welcome back!
My name is John,
and today is a great day to learn something new.
So let’s do that together. I’m David,
and you’re joining us here on Studio Classroom.
Friends, we’ve been talking about something called
quantum computers. They are a different way of
processing information, and this quantum leap
may be the future.
David, what’s one thing we learned from our lesson yesterday?
Well, we learned that
classical computers process data using binary bits,
while quantum computers use something new called a qubit,
that is able to be both a zero and a one
at the same time — something called
superposition.
Oh, okay. So
classical — or the computers
we use now — can basically say yes or no, zero or one.
But these new quantum computers are using little atoms
and can just store a lot more
information. This could change the world, friends!
But we’d better practice the English
terms around this subject,
so let’s do that in the first section
of our reading together:
Quantum Leap
The unique properties of superposition
enable quantum computers to perform parallel computations.
This feature exponentially increases their processing speed
and the volume of information that they can process,
making quantum computers particularly suited for uses like
medical and environmental research.
In drug discovery, for example,
quantum computers could model
the interactions between molecules in revolutionary ways,
boosting the development of life-saving treatments.
Regarding environmental research,
quantum computers could model complex climate systems,
leading to better predictions for extreme weather events.
Hi everyone, welcome to Language Lab. I’m Jack.
我們先來看 molecule 這個名詞,意思是「分子」。
比如:
Light can pass through water because of the way the molecules are arranged.
光能穿透水,是因為分子的排列方式。
Molecule 也指極小的部分。
比如:
Steve said he cancelled their date because he was sick, but Sue had a tiny molecule of doubt.
Steve 說他取消約會是因為生病了,但 Sue 有一絲懷疑。
Molecule 的形容詞是 molecular,意思是「分子的」。
比如:
Dr. Lee’s research in molecular biology could help the world replace plastic with biodegradable plant material.
李博士的分子生物學研究,可以幫助全世界用可生物分解的植物材料取代塑膠。
All right, friends,
we’re talking about computers. We read:
The unique properties of superposition
enable quantum computers to perform parallel computations.
All right, if you’re sweating, that’s okay —
you’re about to learn something new today.
So we read first this phrase: unique properties.
If something is a unique property,
it means it’s a special quality that only
that thing has.
Can you use that in another sentence?
Yes, absolutely! We could say something like:
My daughter has a unique ability to
do watercolor paintings.
She’s really especially good at that thing.
Cool. So one of the unique abilities or properties
of quantum computers is this thing called superposition.
Now to review from yesterday —
superposition means
two things are happening at the same time.
The computers don’t just say yes or no —
they can kind of say both at the same time.
And this superposition
enables quantum computers to perform parallel computations.
Parallel is definitely a word you need to know.
What does it mean?
If you have, for example, parallel lines,
it means you have two lines that are next to each other —
they’re not meeting, they’re just right next to each other.
When we talk about parallel computations,
we’re talking about
two different computations — or more —
that are all happening in parallel, at the same time.
Not connected,
but all doing their job.
And this,
as we see in the next sentence,
exponentially increases
their processing speed and the amount of information
they can process.
Exponential is a very good word when we talk about computers.
Absolutely! So they can do
two things at the same time — or even more —
and their processing speed is something that is
really helpful when you want your computer
to do something well.
Friends, we read together:
This is making quantum computers
particularly suited for uses like medical and environmental research.
So suited for means something is fit for something,
or it matches well.
When I think of environmental research and medical,
I think about systems that are very complicated.
Yeah, absolutely.
And when you think about it —
especially when it comes to something like medical research —
in order to understand the molecules in a chemical,
in order to make a certain kind of medicine or material,
isn’t it better to have something
that’s actually computing at a molecular level?
That makes sense.
Remember, our little human brains
and the computers we have now
can barely understand even one molecule.
We actually can’t even
understand one molecule completely yet —
which is pretty humbling, if you ask me.
And we also see a word here to add to our vocabulary:
boosting.
This could boost
the development of life-saving treatments.
If you boost something, it
means you give it an advantage or you help it
in its progress.
We also have a word here — complex,
which you could also say is complicated, right?
Yeah.
I often think of
complex and complicated as a little bit different, personally.
Complicated is something that maybe
doesn’t need to be so involved — like a tangled ball of yarn,
or your headphone cable when you first pull it out of your pocket —
it’s so complicated.
But something that’s complex —
oftentimes people use that word to describe something that is
put together in a really special way.
Like if you look at the way
light reflects off of the inside of a diamond —
because of its complex structure.
That’s right. And I think when we’re
— as a scientist — if you’re interested in being a scientist,
understanding that there’s this
design built into nature is actually
why we can pursue the sciences,
because we understand that they are intentionally complex,
not just complicated and random.
Thank you for making that distinction.
Well, friends, this
is exciting and advanced stuff,
and hopefully it can lead to better
predictions for things like
extreme weather events —
to maybe keep people safe.
But let’s go to the next section of our reading
to learn more about the computers.
Quantum Leap
While the potential is exciting,
quantum computers can only operate in specific conditions.
Even small environmental disturbances,
such as temperature changes,
can cause qubits to fall out of superposition,
resulting in errors in calculations.
Researchers keep quantum states stable through
advanced cooling techniques,
with some quantum computers
kept at temperatures close to absolute zero —
around negative 273 degrees Celsius.
今天的 Usage Tip 要來看動詞加受詞加受詞補語的句型。
例如課文這句:
Researchers keep quantum states stable through advanced cooling techniques.
在這句的句型中,常用的動詞除了 keep(保持) 以外,還有 leave(使處於某狀態)、find(發現) 等等。
而受詞補語是用來補充受詞的狀態,可能會以形容詞、現在分詞、過去分詞的形式出現。
來看例句:
The teacher kept the students focused with an interesting story.
這位老師用有趣的故事來讓學生專心學習。
Well friends, now the big question —
What are quantum computers doing right now?
Are they ready to be used?
Not quite. We read:
While the potential is exciting,
quantum computers can only operate in specific conditions.
What are conditions used here?
Well, this word has a lot of different uses.
But here, the word conditions is used the way
we would use it when talking about the weather.
“What are the weather conditions for today’s flight?”
Meaning: what kind of weather will there be
when we try to fly our airplane? Will it be raining?
Will it be snowing?
You could also talk about someone’s health condition,
meaning: what is the state of their body?
Are they sick? Are they well?
How are they doing? What is their condition?
You also use that usage for things like
how well preserved an item is.
For example,
I could say, “My phone case is in terrible condition.”
It’s so beat up because I keep dropping my phone.
But again, here we’re talking about environmental conditions.
One example we get is the temperature,
which is very important.
We read that
Even small environmental disturbances,
such as temperature changes,
can cause qubits to fall out of superposition,
resulting in errors in calculations.
Well, there’s a word there — qubit.
And again, what is a qubit?
A qubit is a special kind of bit
used by quantum computers
that is able to be a zero and a one at the same time.
Okay, so if it’s too hot, usually,
then these qubits aren’t stable anymore.
It’s too hard to track them.
Friends, I don’t know if you remember from your science class,
but as things get hotter, they get less stable.
This is why water, for example,
is very chill and unmoving when it’s cold — right? It’s ice.
But as it warms up, it becomes liquid water,
and then finally gas or even something called plasma.
And it’s very difficult to—odd—
very difficult to track.
So if you imagine your computer melting
when it gets above a certain temperature,
you can see how complicated this is.
We read a little bit more about what researchers are doing though, don’t we?
Yes.
So, researchers are trying to keep these quantum states stable
through advanced cooling techniques.
And the reason why is that
if there are environmental disturbances,
then there can actually be errors in calculations.
Now the crazy thing
is that some of these temperatures
that are being used to keep quantum states stable
are as cold as being close to absolute zero,
which is around negative 273 degrees Celsius —
which is actually a little bit colder than outer space.
Oh—hang on, hang on!
So to use an analogy, imagine that
you can study for a test — you’re a really smart student —
but you can only do it
when you’re squeezed into your refrigerator.
Can you imagine that?
It would be very difficult to find a good place to study.
But here you’re talking about absolute zero?
You said it was colder than outer space?
Yeah, that’s what they say.
Well, I don’t know if I’ll be getting a quantum computer
for my birthday this year,
but it certainly is interesting to think about the potential!
Let’s go up to the Info Cloud though,
and learn more about the words we’re covering today.
Hello everyone, welcome to Info Cloud.
Garrett, do you remember a time when you switched from
working on team projects to leading one?
Well Rex, I do — and let me tell you, that was a whole new ball game.
Good expression, Garrett! Let’s talk about it.
Sure.
“A whole new ball game”
is a phrase we use to describe a situation
that’s completely different from what we’re used to.
It comes from sports, where a game can change
dramatically depending on what happens.
Now we use it more broadly for any
major change in circumstances — like
starting college after high school.
The structure is different,
the expectations are higher,
and you have way more independence.
It’s a whole new ball game.
Or think about moving to a new country.
Adjusting to the culture,
language, and daily life can feel like
starting the game of life all over again.
Definitely!
When I became the manager of the store
I had worked at as an employee,
I had to adjust to the new responsibilities
and the change in the relationship between me and my co-workers.
It was a whole new ball game.
a whole new ball game
a whole new ball game
很多時候,我們所面臨的環境會經歷重大改變。
今天要跟大家分享的用語是 a whole new ball game,字面上是「一場全新的球賽」,用來形容一個完全不同於我們習慣的情況或局面。
在球賽中,情況可能會因為發生的事情而發生巨變;在日常生活中,我們可以用它來形容任何重大的環境變化。
例如:
Starting college is a whole new ball game.
開始大學生活是一個全新的體驗。
當你搬到一個新的國家,適應那裡的文化、語言和日常生活,或是進入一個新的工作崗位,
感覺就好像開始一段新的體驗,這就算是 a whole new ball game。
這就是今天的 Info Cloud,我們下次雲端見!
Quantum Leap
Quantum Leap
One significant threat of quantum computers is the danger
they pose to current encryption methods.
Since quantum computers can process
vast amounts of data in parallel,
they could be used to break the encryption algorithms
used to secure sensitive data,
such as online transactions and communications.
Despite these challenges and concerns,
the quantum age is on the horizon,
and the world will be changed by the breakthroughs
this technology will achieve for humanity.
我們來看名詞 breakthrough,意思是「突破」或是「重大進展」。
來看例句:
Learning to read Chinese characters had seemed impossible, but I think I had a breakthrough this week.
學習閱讀中文似乎是不可能的,但我覺得我這週有了突破。
或是:
Steve and Sue had a breakthrough in their relationship when they had an honest conversation about trust and communication styles.
當 Steve 和 Sue 就信任和溝通方式進行了坦誠對話後,他們的關係有了突破性的進展。
Breakthrough 也指「突圍」,例如:
During the war, people were terrified that an enemy breakthrough would destroy their city and cut off their water supply.
戰爭期間,百姓害怕敵軍的突圍會摧毀他們的城市,切斷他們的供水。
Well friends,
why is everybody so desperate to get a quantum computer?
Remember, whenever there’s a new technology,
it’s not just the good guys that are using it.
People will also use these high-tech computers for crimes,
because of the condition of humanity.
We learn that one significant threat of quantum computers is—what?
Well, it is the danger that they pose to encryption methods.
We could have a whole article just on encryption.
But basically, it’s sort of like when you write your friend
a secret note using a language like:
"Okay, every letter is actually three letters before or after."
And only your friend has the special key
that will help them decode or
understand what the message means.
That’s basically what encryption is.
And there are some very complex encryption algorithms.
However, quantum computers could break those like a dry stick.
Oh wow.
Okay, so the word encryption has another word in there—cryptic.
If something is cryptic, it means it’s mysterious.
So encryption means to make something mysterious.
There’s another word there—decryption,
which means to make something un-mysterious,
or to make it clear.
So these quantum computers could decrypt secrets—uh oh.
And this is why people want to get quantum computers
before the bad guys do.
We read:
Since quantum computers can process, or think through,
vast amounts of data in parallel,
they could be used to break the encryption algorithms
used to secure sensitive data.
Let’s break that down a little bit.
We learned about things in parallel, right?
That’s right—happening at the same time.
Yeah, yeah, or happening kind of…
yeah, at the same time, right next to each other—different processes.
Now what is an algorithm?
I know that’s a very important word for computers.
It is! And an algorithm is actually
what helps you choose your YouTube videos, in fact.
That’s right—it’s the pattern that a computer sort of thinks in, right?
Yeah!
You can actually sort of think of it
like a recipe that you give a computer
to do certain things in a certain kind of way.
Ooh, I like that. The computer’s recipe for doing things is
its algorithm.
Make sure you say that word out loud: algorithm.
And we read that online transactions or communications
are part of these things.
A transaction means spending money,
like buying something online.
But we read something hopeful at the end:
Despite these challenges and concerns,
the quantum age is on the horizon.
What does that mean, “on the horizon”?
If it’s on the horizon, it means that it’s coming soon—
sort of like when you see the sun rising from the horizon,
which is that line you see between the ground and the sky.
Cool. So it’s coming in history,
and the breakthroughs this technology will achieve for humanity
may change the world.
Remember, humanity means people.
So I’m always a little careful when we’re talking about breakthroughs for humanity…
How will we use this?
Well friends, let’s think about something fun for just a moment.
It’s time for today’s Fun Fact!
Wooop!
Hello, fact friends!
I am Detective Ernest Finder and I have a cold—I mean, a fun fact—for you today!
Did you know the coldest spot on Earth is -89.2°C?
It is in Antarctica.
That’s really cold!
Computers that are quantum need to have a cold place,
and Antarctica is not a good place to store a computer—
it is still too warm for quantum computing.
But it is pretty cold.
And that is today’s fun fact!
All right David, now the real question:
Talk about it, friends.
If you had access to a quantum computer,
what would you do with it?
I think I… I would just try to play around with it a little bit—maybe do some experiments.
But I think the important thing is to remember that
quantum computers will not fix problems of humanity,
even if they can be useful tools.
That’s right, friends!
Well, that’s all the time we have for today.
I hope you keep thinking about this question.
For now, I’m John.
And I’m David.
And we will see you next time
right here on Studio Classroom.
<<<deepseek翻譯>>>
嘿,朋友們,歡迎回來!
我是約翰,
今天是學習新事物的好日子。
讓我們一起來學習吧。我是大衛,
你正在收聽的是《空中英語教室》。
朋友們,我們一直在討論一種叫做
量子電腦的東西。它們是一種不同的
信息處理方式,這個量子躍進
可能是未來。
大衛,我們從昨天的課程中學到了什麼?
嗯,我們學到
傳統電腦使用二進制位元處理數據,
而量子電腦使用一種叫做量子位元的新東西,
它能夠同時是0和1——
這種狀態被稱為
量子疊加。
哦,好的。所以
傳統的——或者說我們
現在使用的電腦——基本上只能回答是或否,0或1。
但這些新的量子電腦使用微小的原子
可以存儲更多的
信息。這可能會改變世界,朋友們!
但我們最好練習一下與這個主題相關的
英語術語,
讓我們在閱讀的第一部分
一起來學習:
量子躍進
量子疊加的獨特特性
使量子電腦能夠執行平行計算。
這一特性指數級地提高了它們的處理速度
和能夠處理的信息量,
使得量子電腦特別適合用於
醫療和環境研究等領域。
例如,在藥物發現方面,
量子電腦可以以革命性的方式模擬
分子間的相互作用,
加速救命療法的開發。
在環境研究方面,
量子電腦可以模擬複雜的氣候系統,
從而更好地預測極端天氣事件。
大家好,歡迎來到語言實驗室。我是傑克。
我們先來看 molecule 這個名詞,意思是「分子」。
比如:
光能穿透水,是因為分子的排列方式。
Molecule 也指極小的部分。
比如:
Steve 說他取消約會是因為生病了,但 Sue 有一絲懷疑。
Molecule 的形容詞是 molecular,意思是「分子的」。
比如:
李博士的分子生物學研究,可以幫助全世界用可生物分解的植物材料取代塑膠。
好的,朋友們,
我們正在討論電腦。我們讀到:
量子疊加的獨特特性
使量子電腦能夠執行平行計算。
如果你感到困惑,沒關係——
你今天即將學到新知識。
首先我們看到這個短語:獨特特性。
如果某物具有獨特特性,
意味著這是只有該物
擁有的特殊品質。
你能用這個詞造另一個句子嗎?
當然可以!我們可以這樣說:
我女兒有一種獨特的能力,
能夠創作水彩畫。
她在那方面特別擅長。
酷。所以量子電腦的
獨特能力或特性之一
就是這種叫做量子疊加的狀態。
現在回顧一下昨天的內容——
量子疊加意味著
兩件事同時發生。
這些電腦不僅僅回答是或否——
它們可以同時回答兩者。
這種量子疊加
使量子電腦能夠執行平行計算。
平行這個詞你必須了解。
它是什麼意思?
例如,如果你有平行線,
意味著你有兩條彼此相鄰的線——
它們不相交,只是彼此平行。
當我們談論平行計算時,
我們指的是
兩個或更多不同的計算
同時平行進行。
不相連,
但都在執行自己的任務。
這,
正如我們在下一句看到的,
指數級地提高了
它們的處理速度和能夠
處理的信息量。
指數級是一個在談論電腦時非常合適的詞。
沒錯!所以它們可以
同時做兩件事——甚至更多——
而它們的處理速度
在你希望電腦
高效運作時非常有用。
朋友們,我們一起讀到:
這使得量子電腦
特別適合用於醫療和環境研究等領域。
所以適合意味著某物適合某用途,
或匹配良好。
當我想到環境研究和醫療時,
我想到的是非常複雜的系統。
是的,絕對。
當你思考時——
特別是涉及醫療研究時——
為了理解化學物質中的分子,
為了製造某種藥物或材料,
難道不是在分子層面進行計算
會更好嗎?
這很有道理。
記住,我們人類的小腦袋
和我們現在擁有的電腦
甚至難以理解一個分子。
實際上我們甚至還不能
完全理解一個分子——
如果你問我,這相當令人謙卑。
我們還看到一個詞可以加入我們的詞彙表:
促進。
這可以促進
救命療法的開發。
如果你促進某物,意味著
你給予它優勢或幫助它
進步。
我們還看到一個詞——複雜的,
你也可以說它是繁瑣的,對吧?
是的。
我個人常常認為
複雜和繁瑣有點不同。
繁瑣的東西可能
不需要如此複雜——比如一團亂的毛線,
或你剛從口袋裡拿出的耳機線——
它太繁瑣了。
但複雜的東西——
人們常用這個詞來描述
以特殊方式組合的事物。
比如當你觀察
光線如何從鑽石內部反射——
因為其複雜的結構。
沒錯。我認為當我們
——作為科學家——如果你有興趣成為科學家,
理解自然界中
存在這種設計實際上是
我們能夠追求科學的原因,
因為我們理解它們是刻意複雜的,
而不僅僅是繁瑣和隨機的。
謝謝你做出這個區分。
朋友們,這
是令人興奮且先進的內容,
希望它能帶來更好的
預測,例如
極端天氣事件——
以保護人們的安全。
但讓我們繼續閱讀下一部分
以了解更多關於電腦的內容。
量子躍進
儘管潛力令人興奮,
量子電腦只能在特定條件下運行。
即使是微小的環境干擾,
例如溫度變化,
也可能導致量子位元脫離疊加狀態,
從而導致計算錯誤。
研究人員通過
先進的冷卻技術
保持量子狀態穩定,
一些量子電腦
保持在接近絕對零度的溫度——
約攝氏零下273度。
今天的 Usage Tip 要來看動詞加受詞加受詞補語的句型。
例如課文這句:
研究人員通過先進的冷卻技術保持量子狀態穩定。
在這句的句型中,常用的動詞除了 keep(保持) 以外,還有 leave(使處於某狀態)、find(發現) 等等。
而受詞補語是用來補充受詞的狀態,可能會以形容詞、現在分詞、過去分詞的形式出現。
來看例句:
這位老師用有趣的故事來讓學生專心學習。
朋友們,現在最大的問題——
量子電腦現在在做什麼?
它們準備好被使用了嗎?
還沒有。我們讀到:
儘管潛力令人興奮,
量子電腦只能在特定條件下運行。
這裡的條件是什麼意思?
這個詞有很多不同的用法。
但在這裡,條件的用法類似於
我們談論天氣時的用法。
「今天飛行的天氣條件如何?」
意思是:當我們試圖飛行時,天氣會如何?會下雨嗎?
會下雪嗎?
你也可以談論某人的健康狀況,
意思是:他們的身體狀態如何?
他們生病了嗎?他們健康嗎?
他們怎麼樣?他們的狀況如何?
你也可以用這種用法來描述物品的
保存狀況。
例如,
我可以說:「我的手機殼狀況很糟。」
它破損得很厲害,因為我老是摔手機。
但在這裡,我們談論的是環境條件。
我們得到的一個例子是溫度,
這非常重要。
我們讀到
即使是微小的環境干擾,
例如溫度變化,
也可能導致量子位元脫離疊加狀態,
從而導致計算錯誤。
那裡有一個詞——量子位元。
再次,什麼是量子位元?
量子位元是一種特殊的位元,
被量子電腦使用,
能夠同時是0和1。
好的,所以如果溫度太高,
這些量子位元就不再穩定了。
很難追蹤它們。
朋友們,我不知道你們是否還記得科學課上的內容,
但當物體變熱時,它們會變得不穩定。
這就是為什麼水,例如,
在冷的時候非常冷靜且不動——對吧?它是冰。
但當它變暖時,它變成液態水,
最後變成氣體甚至等離子體。
而且很難——非常
難以追蹤。
所以如果你想像你的電腦
在超過一定溫度時融化,
你可以看到這有多複雜。
但我們讀到了研究人員正在做些什麼,對吧?
是的。
所以,研究人員試圖通過先進的冷卻技術
保持這些量子狀態穩定。
原因是
如果有環境干擾,
那麼實際上可能會出現計算錯誤。
現在瘋狂的是
一些用來保持量子狀態穩定的溫度
接近絕對零度,
約攝氏零下273度——
實際上比外太空還要冷一點。
哦——等等,等等!
所以用一個比喻,想像
你可以為考試學習——你是一個非常聰明的學生——
但你只能在
擠進冰箱時才能學習。
你能想像嗎?
找到一個好的學習場所會非常困難。
但你在這裡談論的是絕對零度?
你說它比外太空還冷?
是的,他們是這麼說的。
嗯,我不知道今年生日
我是否會得到一台量子電腦,
但思考它的潛力確實很有趣!
讓我們進入資訊雲,
了解更多關於今天討論的詞彙。
大家好,歡迎來到資訊雲。
加勒特,你還記得你從
參與團隊項目轉為領導一個項目的時候嗎?
嗯,雷克斯,我記得——讓我告訴你,那完全是另一回事。
好詞,加勒特!讓我們來談談它。
當然。
「全新的局面」
是我們用來描述與我們習慣的情況
完全不同的短語。
它來自體育運動,比賽可以根據
發生的事情發生戲劇性的變化。
現在我們更廣泛地用它來描述任何
情況的重大變化——比如
高中畢業後開始大學生活。
結構不同,
期望更高,
你有更多的獨立性。
這是一個全新的局面。
或者想想搬到一個新國家。
適應文化、
語言和日常生活感覺就像
重新開始人生的遊戲。
確實!
當我成為我曾經作為員工工作的商店的經理時,
我必須適應新的責任
和與同事之間關係的變化。
這是一個全新的局面。
一個全新的局面
很多時候,我們所面臨的環境會經歷重大改變。
今天要跟大家分享的用語是 a whole new ball game,字面上是「一場全新的球賽」,用來形容一個完全不同於我們習慣的情況或局面。
在球賽中,情況可能會因為發生的事情而發生巨變;在日常生活中,我們可以用它來形容任何重大的環境變化。
例如:
開始大學生活是一個全新的體驗。
當你搬到一個新的國家,適應那裡的文化、語言和日常生活,或是進入一個新的工作崗位,
感覺就好像開始一段新的體驗,這就算是 a whole new ball game。
這就是今天的資訊雲,我們下次雲端見!
量子躍進
量子電腦的一個重大威脅是它們
對當前加密方法構成的危險。
由於量子電腦可以平行處理
大量數據,
它們可能被用來破解
用於保護敏感數據的加密算法,
例如在線交易和通信。
儘管存在這些挑戰和擔憂,
量子時代即將到來,
世界將因這項技術
為人類帶來的突破而改變。
我們來看名詞 breakthrough,意思是「突破」或是「重大進展」。
來看例句:
學習閱讀中文似乎是不可能的,但我覺得我這週有了突破。
或是:
當 Steve 和 Sue 就信任和溝通方式進行了坦誠對話後,他們的關係有了突破性的進展。
Breakthrough 也指「突圍」,例如:
戰爭期間,百姓害怕敵軍的突圍會摧毀他們的城市,切斷他們的供水。
朋友們,
為什麼每個人都如此渴望獲得量子電腦?
記住,每當有新技術出現時,
不僅好人會使用它。
人們也會將這些高科技電腦用於犯罪,
因為這是人性的現狀。
我們了解到量子電腦的一個重大威脅是什麼?
嗯,是它們對加密方法構成的危險。
我們可以專門寫一篇文章來討論加密。
但基本上,它有點像當你給朋友寫
一封秘密便條,使用一種語言:
「好吧,每個字母實際上是前或後三個字母。」
只有你的朋友擁有特殊的鑰匙
可以幫助他們解碼或
理解信息的含義。
這基本上就是加密。
有一些非常複雜的加密算法。
然而,量子電腦可以像折斷一根乾樹枝一樣破解它們。
哦,哇。
好的,所以加密這個詞裡面有另一個詞——神秘的。
如果某物是神秘的,意味著它是難以理解的。
所以加密意味著使某物變得神秘。
還有另一個詞——解密,
意思是使某物不再神秘,
或使其清晰。
所以這些量子電腦可以解密秘密——哦不。
這就是為什麼人們想在壞人之前
獲得量子電腦。
我們讀到:
由於量子電腦可以處理,或思考,
大量平行數據,
它們可能被用來破解
用於保護敏感數據的加密算法。
讓我們稍微分解一下。
我們學過平行的事物,對吧?
沒錯——同時發生。
是的,是的,或者同時發生……
是的,同時,彼此平行——不同的過程。
現在什麼是算法?
我知道這對電腦來說是一個非常重要的詞。
是的!算法實際上是
幫助你選擇YouTube視頻的東西,事實上。
沒錯——這是電腦某種思考的模式,對吧?
是的!
你可以把它想像成
你給電腦的一個食譜,
以某種方式做某些事情。
哦,我喜歡這個比喻。電腦做事的食譜就是
它的算法。
確保你大聲說出這個詞:算法。
我們讀到在線交易或通信
是這些事物的一部分。
交易意味著花錢,
比如在網上購物。
但我們在結尾讀到了一些希望的內容:
儘管存在這些挑戰和擔憂,
量子時代即將到來。
這是什麼意思,「即將到來」?
如果它即將到來,意味著它很快就會發生——
有點像當你看到太陽從地平線升起時,
那是你看到地面和天空之間的那條線。
酷。所以它即將在歷史上到來,
這項技術為人類帶來的突破
可能會改變世界。
記住,人類意味著人們。
所以當我們談論人類的突破時,我總是有些謹慎……
我們將如何使用它?
朋友們,讓我們暫時想一些有趣的事情。
是時候來看今天的有趣事實了!
哇!
你好,事實朋友們!
我是偵探歐內斯特·芬德,今天我有一個冷——我是說,有趣的事實——要告訴你們!
你知道地球上最冷的地方是零下89.2°C嗎?
它在南極洲。
那真的很冷!
量子電腦需要一個寒冷的地方,
而南極洲不是存儲電腦的好地方——
對量子計算來說仍然太溫暖了。
但它確實相當冷。
這就是今天的有趣事實!
好的,大衛,現在真正的問題:
談論它,朋友們。
如果你有機會使用量子電腦,
你會用它做什麼?
我想我……我會試著玩一下——也許做一些實驗。
但我認為重要的是要記住
量子電腦不會解決人類的問題,
即使它們可以是有用的工具。
沒錯,朋友們!
好的,這就是我們今天的所有時間。
我希望你繼續思考這個問題。
現在,我是約翰。
我是大衛。
我們下次
在《空中英語教室》再見。
你可能會有興趣的文章:
限會員,要發表迴響,請先登入