Contents ...
udn網路城邦
Thailand neck support pillow OEM 》combining comfor
2025/04/22 19:51
瀏覽24
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Pillow OEM for wellness brands Indonesia

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Customized sports insole ODM China

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Graphene insole manufacturer in China

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.China pillow OEM manufacturer

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Thailand insole ODM service provider

Hippocampal dentate gyrus in HSHA mice, showing significant astrocyte activation (GFAP: white) and oxidative stress (8OHdG: green) surrounding the cerebral capillaries (laminin-a4: magenta). Nuclei staining with DAPI (blue). Credit: John Charles Louis Mamo, Lam V et al., 2021, PLOS Biology, CC BY 4.0 Peripherally produced amyloid causes neurodegeneration. Amyloid protein made in the liver can cause neurodegeneration in the brain, according to a new study in the open-access journal PLOS Biology, by John Mamo of Curtin University in Bentley, Australia, and colleagues. Since the protein is thought to be a key contributor to development of Alzheimer’s disease (AD), the results suggest that the liver may play an important role in the onset or progression of the disease. Deposits of amyloid-beta (A-beta) in the brain are one of the pathological hallmarks of AD and are implicated in neurodegeneration in both human patients and animal models of the disease. But A-beta is also present in peripheral organs, and blood levels of A-beta correlate with cerebral amyloid burden and cognitive decline, raising the possibility that peripherally produced a-beta may contribute to the disease. Testing that hypothesis has been difficult, since the brain also produces A-beta, and distinguishing protein from the two sources is challenging. In the current study, the authors surmounted that challenge by developing a mouse that produces human a-beta only in liver cells. They showed that the protein was carried in the blood by triglyceride-rich lipoproteins, just as it is in humans, and passed from the periphery into the brain. They found that mice developed neurodegeneration and brain atrophy, which was accompanied by neurovascular inflammation and dysfunction of cerebral capillaries, both commonly observed with Alzheimer’s disease. Affected mice performed poorly on a learning test that depends on function of the hippocampus, the brain structure that is essential for the formation of new memories. The findings from this study indicate that peripherally derived A-beta has the ability to cause neurodegeneration and suggest that A-beta made in the liver is a potential contributor to human disease. If that contribution is significant, the findings may have major implications for understanding Alzheimer’s disease. To date, most models of the disease have focused on brain overproduction of A-beta, which mimics the rare genetic cases of human Alzheimer’s. But for the vast majority of AD cases, overproduction of A-beta in the brain is not thought to be central to the disease etiology. Instead, lifestyle factors may play a more important role, including a high-fat diet, which might accelerate liver production of A-beta. The effects of peripheral A-beta on brain capillaries may be critical in the disease process, Mamo adds. “While further studies are now needed, this finding shows the abundance of these toxic protein deposits in the blood could potentially be addressed through a person’s diet and some drugs that could specifically target lipoprotein amyloid, therefore reducing their risk or slowing the progression of Alzheimer’s disease.” Reference: “Synthesis of human amyloid restricted to liver results in an Alzheimer disease–like neurodegenerative phenotype” by Virginie Lam, Ryusuke Takechi, Mark J. Hackett, Roslyn Francis, Michael Bynevelt, Liesl M. Celliers, Michael Nesbit, Somayra Mamsa, Frank Arfuso, Sukanya Das, Frank Koentgen, Maree Hagan, Lincoln Codd, Kirsty Richardson, Brenton O’Mara, Rainer K. Scharli, Laurence Morandeau, Jonathan Gauntlett, Christopher Leatherday, Jan Boucek, John C. L. Mamo, 14 September 2021, PLOS Biology. DOI: 10.1371/journal.pbio.3001358 Funding: This work was funded by the National Health and Medical Research Council (GNT1135590 (RT), GNT1064567 (JM), GNT1156582 (VL)), and Western Australian Department of Health (RT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

The researchers were able to reconstruct the three-dimensional shape of the single chloroplast from several hundred images. Credit: University of Oldenburg / General and Molecular Microbiology group A distinctive photosynthetic machinery characterizes a unicellular organism present in algal blooms. What are the cellular mechanisms within a single-celled marine algae species responsible for triggering toxic algal blooms? A research group under the direction of microbiologist Prof. Dr. Ralf Rabus from the University of Oldenburg, Germany, has conducted first detailed analyses of the unusual cell biology of Prorocentrum cordatum, a globally widespread species of the dinoflagellates group, using both advanced microscopic and proteomics approaches. As the team reports in the science journal Plant Physiology, the photosynthesis process in these microorganisms is organised in an unusual configuration which may help them to better adapt to the changing light conditions in the oceans. The results of the study could lead to an improved understanding of the incidence of harmful algal blooms, which may be becoming more frequent due to climate change. Dinoflagellates are important organisms in both marine and freshwater ecosystems. These unicellular organisms make up a substantial proportion of free-living phytoplankton, which forms the basis of the food web in oceans and lakes. Some species, including Prorocentrum cordatum, can proliferate in warm, nutrient-rich waters and form harmful algal blooms. Cross-section of a cell of the microalga Prorocentrum cordatum. The nucleus with the chromosomes is on the right. A single barrel-like chloroplast takes up 40 percent of the cell volume. Credit: University of Oldenburg / General and Molecular Microbiology group “We studied this organism because despite its environmental relevance its cell biology and metabolic physiology are still poorly understood,” said Rabus. In addition to studying photosynthesis in the microalgae, the researchers also examined the structure of their cell nuclei and their response to heat stress in collaboration with teams from the Universities of Hanover, Braunschweig, and Munich and set out the findings in two other recently published papers. Advanced Imaging Techniques Reveal Unique Cellular Structures Using a powerful scanning electron microscope with a focused ion beam at the Ludwig-Maximilians-Universität Munich, the team headed by Rabus and lead author Jana Kalvelage from the Institute of Chemistry and Biology of the Marine Environment (ICBM) was able to reconstruct the three-dimensional architecture of the chloroplasts, where photosynthesis takes place. The scientists were able to generate around 600 image layers of a single algae cell and then combine the sections to create a three-dimensional, high-resolution spatial image of the oval-shaped single-celled organisms, which are generally around 10 to 20 thousandths of a millimeter long. The analysis revealed that Prorocentrum cordatum have only a single barrel-like chloroplast that takes up 40 percent of their cell volume. Proteomic (protein) analyses then revealed marked differences between the photosynthetic apparatus of the microalgae and that of Arabidopsis thaliana, a well-studied model plant in genetics research. In both species, photosynthesis takes place in complex protein structures embedded in the chloroplast’s extensive membrane system. However, in Prorocentrum cordatum the team observed that the conversion of solar energy into biochemical energy takes place in a single large structure consisting of numerous proteins, known as a “megacomplex”, whereas in the chloroplasts of the plant species, the different steps of photosynthesis occur in spatially separated structures. The team also reported that P. cordatum uses a large number of different pigment-binding proteins to efficiently capture solar energy. “This diversity is a special adaptation to the changing light conditions to which the organism is exposed in the oceans,” Rabus explained. Exploring Genetic Complexity and Adaptability Two other studies published last year highlight the microalgae’s unusual biology: in the first a German-Australian team of which the ICBM researchers were also members found that the organisms have a very large genome with twice as many base pairs as in humans. The team also discovered that the algae change their metabolism and their rate of growth decelerates in response to heat stress. In a second publication, the team led by Rabus and Kalvelage described the cell nucleus in greater detail, reporting that P. cordatum has 62 chromosomes, an unusually high number that fills almost the entire cell nucleus. The function of a large proportion of the nuclear proteins that were identified by the researchers is currently unknown, the team observed. “We have investigated how this important microalgae functions at the molecular level. These findings form the basis for a better understanding of its role in the environment,” Rabus stressed. Further investigations could provide answers to questions such as how the organism’s metabolism reacts to other stress factors – and why the species is able to adapt to such a wide range of environmental conditions, from those in the tropics to those in temperate climates, he explained. Reference: “Conspicuous chloroplast with light harvesting-photosystem I/II megacomplex in marine Prorocentrum cordatum” by Jana Kalvelage, Lars Wöhlbrand, Jennifer Senkler, Julian Schumacher, Noah Ditz, Kai Bischof, Michael Winklhofer, Andreas Klingl, Hans-Peter Braun and Ralf Rabus, 8 February 2024, Plant Physiology. DOI: 10.1093/plphys/kiae052 The study was funded by the German Research Foundation.

A recent study reveals that Arctic microalgae can perform photosynthesis under extremely low light conditions at the end of the polar night, suggesting a broader potential for marine photosynthesis than previously understood. Credit: SciTechDaily.com The research team has published new results from the MOSAiC project. Photosynthesis occurs in nature even under very low light conditions, according to a global study focused on Arctic microalgae growth following the polar night. This research was conducted during the MOSAiC expedition near the 88° northern latitude. Findings indicate that microalgae are capable of accumulating biomass through photosynthesis by late March, even in these extreme northern regions. At this time, the sun is barely above the horizon, so that it is still almost completely dark in the microalgae’s habitat under the snow and ice cover of the Arctic Ocean. The results of the study now published in the journal Nature Communications show that photosynthesis in the ocean is possible under much lower light conditions, and can therefore take place at much greater depths, than previously assumed. Understanding Photosynthesis in Low Light Photosynthesis converts sunlight into biologically usable energy and thus forms the basis of all life on our planet. However, previous measurements of the amount of light required for this have always been well above the theoretically possible minimum. A new study in the scientific journal Nature Communications shows that the build-up of biomass can actually take place with a quantity of light that is close to this minimum. Janin Schaffer (right) lowering the CTD-rosette with 12 big water bottles into the ocean. Credit: Alfred-Wegener-Institut / Michael Gutsche (CC-BY 4.0) The researchers used data from the international MOSAiC research project for their work. As part of the expedition, they froze the German research icebreaker Polarstern in the icepack of the central Arctic for a year in 2019, in order to investigate the annual cycle of the Arctic climate and ecosystem. The team led by Dr Clara Hoppe from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) focused on studying phytoplankton and ice algae. These are responsible for the majority of photosynthesis in the central Arctic. Unexpectedly, the measurements showed that just a few days after the end of the month-long polar night, plant biomass was built up again, for which photosynthesis is absolutely essential. Extremely sensitive light sensors in the ice and water made it possible to measure the amount of light available. Innovative Measurements and Implications The results were particularly surprising because photosynthesis in the Arctic Ocean took place under snow-covered sea ice, which only allows a few photons of incident sunlight to pass through: The microalgae only had about one hundred thousandths of the amount of light of a sunny day on the Earth’s surface available for their growth. “It is very impressive to see how efficiently the algae can utilize such low amounts of light. This shows once again how well organisms are adapted to their environment,” says Clara Hoppe. MOSAiC Ocean City during Leg 3. Credit: Alfred-Wegener-Institut / Saga Svavarsdottir (CC-BY 4.0) The study was made possible by the close collaboration of researchers from various disciplines. Sea ice researchers Dr Niels Fuchs and Prof Dirk Notz from the Institute of Marine Research at the University of Hamburg were responsible for combining measurements of the light field with the biological measurements. “To measure such low light levels under the harsh conditions of the Arctic winter, we had to freeze special, newly developed instruments into the ice in the middle of the polar night,” explains Niels Fuchs. His colleague Dirk Notz adds that it was particularly difficult to take into account irregularities in the light field under the ice due to variations in ice thickness and snow: “But in the end, we could be sure: There was just not more light.” The results of the now published study are important for the entire planet. “Even though our results are specific to the Arctic Ocean, they show what photosynthesis is capable of. If it is so efficient under the challenging conditions of the Arctic, we can assume that organisms in other regions of the oceans have also adapted so well,” says Clara Hoppe, contextualizing the results. This means that there could also be enough light to produce usable energy and oxygen through photosynthesis in deeper areas of the oceans, which would then be available for fish, for example. The corresponding photosynthetic habitat in the global ocean could therefore be significantly larger than previously assumed. Reference: “Photosynthetic light requirement near the theoretical minimum detected in Arctic microalgae” by Clara J. M. Hoppe, Niels Fuchs, Dirk Notz, Philip Anderson, Philipp Assmy, Jørgen Berge, Gunnar Bratbak, Gaël Guillou, Alexandra Kraberg, Aud Larsen, Benoit Lebreton, Eva Leu, Magnus Lucassen, Oliver Müller, Laurent Oziel, Björn Rost, Bernhard Schartmüller, Anders Torstensson and Jonas Wloka, 4 September 2024, Nature Communications. DOI: 10.1038/s41467-024-51636-8 Funding: Ministry of Education and Research, Deutsche Forschungsgemeinschaft, Research Council of Norway, Hanse- Wissenschaftskolleg, Ministry of Education and Research

DVDV1551RTWW78V



Thailand flexible graphene product manufacturing 》craftsmanship meets efficiency for maximum valueSmart pillow ODM manufacturing factory Taiwan 》tailored support for growing product linesInnovative pillow ODM solution in China 》committed to helping you create value through custom manufacturing

限會員,要發表迴響,請先登入