Contents ...
udn網路城邦
Thailand flexible graphene product manufacturing 》
2025/04/22 19:41
瀏覽20
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

ODM pillow factory in Indonesia

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.High-performance insole OEM China

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Vietnam flexible graphene product manufacturing

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Soft-touch pillow OEM service in Thailand

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Latex pillow OEM production in Indonesia

Scientists have discovered that neural thirst control involves two sub-populations of neurons in the brain’s subfornical organ. One is consistently activated by excess water, while the other activates temporarily after drinking. Tokyo Tech researchers discovered two CCK-activated neuron groups in the brain that suppress thirst: one triggered by high body water levels, the other by recent water intake.  Scientists at the Tokyo Institute of Technology (Tokyo Tech) provide deeper insights into neural thirst control. Their study published recently in Nature Communications indicates that cholecystokinin-mediated water-intake suppression is controlled by two neuronal ‘thirst-suppressing’ sub-populations in the subfornical organ in the brain; one population is persistently activated by excessive water levels, and the other, transiently after drinking water. Water sustains life on earth. The first life originated in an ancient sea, and since then, nearly every species that has existed in the past or lives today depends on the exact balance of salt and water (~145 mM; called body-fluid homeostasis or salt homeostasis) for survival. Humans can go weeks without food but will not last more than a few days without water, stressing the importance of this liquid. Thirst: The Body’s Built-In Survival Signal The human body has several intricate mechanisms to make sure we consume an appropriate amount of water for maintaining the homeostasis, which is requisite to survival. One of these simple but key “hacks,” is thirst. When the body experiences dehydration on a hot day (noted by the excess of sodium in the body compared to water, a condition called hypernatremia), the brain sends “signals” to the rest of the body, making us crave the tall glass of water. On the other hand, under a condition called hyponatremia, where there is more water than sodium, we suppress water drinking. The neural mechanisms of how this happens are a subject of great interest. Two groups of CCK positive excitatory neurons were identified in the SFO that are involved in central thirst-suppressive mechanisms. The activation of these CCK-positive neurons suppressed water intake, and in an opposite way, their inhibition induced water intake even under the water-repleted condition. Credit: Tokyo Tech A team of researchers from Tokyo Institute of Technology, headed by Prof Masaharu Noda, have conducted extensive research into this. In their previous studies, they identified that thirst is driven by the so-called “water neurons” in the subfornical organ (SFO) of the brain, a region just outside the blood-brain barrier. When the body is dehydrated, the plasma levels of a peptide hormone called angiotensin II increase. These levels are detected by special angiotensin II “receptors” of water neurons to stimulate water intake. In turn, under sodium-depleted conditions (where there is more water than sodium), the activity of these water neurons is suppressed by “GABAergic” interneurons. “The latter control appeared to be dependent on the hormone cholecystokinin (CCK) in the SFO. However, the CCK-mediated neural mechanisms underlying the inhibitory control of water intake had not been elucidated so far,” states Prof Noda. Two Subpopulations of Thirst-Suppressing Neurons Identified Now, in their latest study published in Nature Communications, the researchers find out more details about this mechanism. They performed an array of experiments including transgenic mice studies, single cell dynamics, fluorescence microscopic Ca2+ imaging, and optical and chemogenetic silencing to explore the neurons in the SFO. They made several interesting observations: first, CCK was produced in the SFO itself, by CCK-producing excitatory neurons, which activate the GABAergic interneurons through their “CCK-B” receptors, causing them to suppress the water neurons and inhibit thirst. What’s more, there are two distinct subpopulations of these CCK neurons. Group 1, which is the largest population, shows strong and sustained activation under the Na-depleted condition (excessive water in the body). Group 2 shows a more rapid and transient activation in response to water intake, with the activation lasting no longer than 20 seconds. There are hints of a third group as well, but these neurons don’t show activation in either condition. Gastrointestinal Connections and Feedback Control Prof Noda is excited about the implications of this study. “Since CCK has long been noted for being a gastrointestinal hormone, these findings open up many possibilities, the most exciting one being the probability of a negative feedback control of drinking based on water sensing signals from the oropharynx or gastrointestinal tract,” he reports. The research highlights the roles of CCK in both Group 1 blood-mediated “persistent” and Group 2 oropharyngeal / gastrointestinal “transient” suppression of water intake. The potential of CCK to activate CCK-B receptor-positive different GABAergic interneurons in a cell-type specific manner underlies the mechanism for the functioning of neuronal circuits. Overall, this research has furthered the understanding of the “thirst control” phenomenon substantially. Reference: “Distinct CCK-positive SFO neurons are involved in persistent or transient suppression of water intake” by Takashi Matsuda, Takeshi Y. Hiyama, Kenta Kobayashi, Kazuto Kobayashi and Masaharu Noda, 10 November 2020, Nature Communications. DOI: 10.1038/s41467-020-19191-0

Photos of bees made using the team’s imaging system. Credit: Silas Bossert lab/WSU Scientists from Washington State University discovered that bees evolved more than 120 million years ago on an ancient supercontinent, western Gondwana. The study provides insights into bees’ evolutionary history, their transformation from wasps, and their role in biodiversity, setting the stage for future research and pollinator conservation efforts. The Origins of Bees The first bees evolved on an ancient supercontinent more than 120 million years ago, diversifying faster and spreading wider than previously suspected, a new study shows. Led by Washington State University researchers, the study provides a new best estimate for when and where bees first evolved. Newly published in the journal Current Biology, the project reconstructed the evolutionary history of bees, estimated their antiquity, and identified their likely geographical expansion around the world. The results indicate their point of origin was in western Gondwana, an ancient supercontinent that at that time included today’s continents of Africa and South America. “There’s been a longstanding puzzle about the spatial origin of bees,” said Silas Bossert, assistant professor with WSU’s Department of Entomology, who co-led the project with Eduardo Almeida, associate professor at the University of São Paulo, Brazil. Photos of bees made using the team’s imaging system. Credit: Silas Bossert lab Broad Genome-Scale Data Analysis Working with a global team, Bossert and Almeida’s team sequenced and compared genes from more than 200 bee species. They compared them with traits from 185 different bee fossils, as well as extinct species, developing an evolutionary history and genealogical models for historical bee distribution. In what may be the broadest genomic study of bees to date, they analyzed hundreds to thousands of genes at a time to make sure that the relationships they inferred were correct. “This is the first time we have broad genome-scale data for all seven bee families,” said co-author Elizabeth Murray, a WSU assistant professor of entomology. Bees’ Evolution From Wasps Previous research established that the first bees likely evolved from wasps, transitioning from predators to collectors of nectar and pollen. This study shows they arose in arid regions of western Gondwana during the early Cretaceous period. “For the first time, we have statistical evidence that bees originated on Gondwana,” Bossert said. “We now know that bees are originally southern hemisphere insects.” A piece of ancient amber containing a tiny, fossilized bee. Bossert and colleagues from around the globe compared features of bees from fossils, including extinct species, in one of the broadest genomic studies of bees to date. Credit: Bossert lab Geographic Expansion and Diversification of Bees The researchers found evidence that as the new continents formed, bees moved north, diversifying and spreading in a parallel partnership with angiosperms, the flowering plants. Later, they colonized India and Australia. All major families of bees appeared to split off prior to the dawn of the Tertiary period, 65 million years ago—the era when dinosaurs became extinct. Bees and Plant Biodiversity The tropical regions of the western hemisphere have an exceptionally rich flora, and that diversity may be due to their longtime association with bees, authors noted. One-quarter of all flowering plants belong to the large and diverse rose family, which make up a significant share of the tropical and temperate host plants for bees. Future Research and Conservation Efforts Bossert’s team aims to expand their efforts, sequencing and studying the genetics and history of more species of bees. Their findings are a useful first step in revealing how bees and flowering plants evolved together. Understanding how bees spread and filled their modern ecological niches could also help keep pollinator populations healthy. “People are paying more attention to the conservation of bees and are trying to keep these species alive where they are,” Murray said. “This work opens the way for more studies on the historical and ecological stage.” Reference: “The evolutionary history of bees in time and space” by Eduardo A.B. Almeida, Silas Bossert, Bryan N. Danforth, Diego S. Porto, Felipe V. Freitas, Charles C. Davis, Elizabeth A. Murray, Bonnie B. Blaimer, Tamara Spasojevic, Patrícia R. Ströher, Michael C. Orr, Laurence Packer, Seán G. Brady, Michael Kuhlmann, Michael G. Branstetter and Marcio R. Pie, 27 July 2023, Current Biology. DOI: 10.1016/j.cub.2023.07.005 Additional contributors included Felipe Freitas, Washington State University; Bryan Danforth, Cornell University; Charles Davis, Harvard University; Bonnie Blaimer, Tamara Spasojevic, and Seán Brady, Smithsonian Institution; Patrícia Ströher and Marcio Pie, Federal University of Paraná, Brazil; Michael Orr, State Museum of Natural History, Stuttgart; Laurence Packer, York University; Michael Kuhlmann, University of Kiel; and Michael G. Branstetter, U.S. Department of Agriculture.

Penn State researchers analyzed the productivity and biodiversity in the world’s symbiotic coral communities and found that the maintenance of water optical quality in coral reefs is fundamental to protecting coral biodiversity and preventing reef degradation. Credit: Tomás López-Londoño / Penn State Penn State’s new research underscores the vital role of water clarity in coral reef conservation. The study reveals that underwater light intensity significantly impacts coral biodiversity by affecting photosynthetic algae energy expenditure. The findings suggest local efforts to maintain water clarity can significantly contribute to preserving these biodiverse ecosystems. New research at Penn State suggests that when preserving the world’s coral reefs, both above and below the surface activity is equally important. A recent study published in the journal Scientific Reports found that maintaining water clarity in coral reefs is crucial for preserving coral biodiversity and avoiding reef degradation. The study analyzed the productivity and biodiversity of the world’s symbiotic coral communities “Coral reefs are one of the most biodiverse ecosystems on Earth,” said Tomás López-Londoño, a postdoctoral scholar at Penn State and lead author on the study. “To better understand that diversity, we looked at the role sunlight plays in the symbiotic relationship between coral and the algae that provide the oxygen for its survival. We found that underwater light intensity plays a critical role in the energy expended by the coral’s symbiotic algae to maintain its photosynthetic activity.” The findings, although novel, are hardly a revelation, he explained. Science has long shown that sunlight is the major source of energy for virtually all biochemical reactions that sustain life on Earth, but sunlight’s impact had not yet been fully understood in coral, he said. A New Model to Understand Coral Diversity “What’s new here is we developed a model that provides a mechanistic explanation for the biodiversity patterns in coral,” said López-Londoño. “Central to that explanation is water clarity, meaning that preserving the underwater light climate should be a priority for coral reef conservation. It’s as vital as pollution mitigation, limiting ocean acidification, and reducing thermal stress.” The researchers studied coral grown in an aquarium, simulating depth and gradations of sunlight, to develop a mathematical model that describes the association between the depth‐dependent variation in photosynthetic energy to corals and gradients of species diversity. They then tested the model on existing published data, comparing reefs with contrasting water clarity and biodiversity patterns in hotspots of marine biodiversity across the globe. The team’s productivity‐biodiversity model explained between 64% and 95% of the depth‐related variation in coral species richness, indicating that much of the variation in species richness with depth is driven by changes in exposure to sunlight. “The model is very elegant in that it takes into consideration only two things,” said Roberto Iglesias-Prieto, Penn State professor of biology and co-author on the study. “It looks at productivity, the potential that an alga has to extract energy from the sun, and the cost of living, the cost of the repair of the photosynthetic machinery. It’s a very simple notion and we found it explains the existing empirical data.” Running their model against global data sets, the researchers found that variation in sunlight-supported algal energy supply plays an important role in the spatial variation of species diversity within coral communities. The results show that highly productive submarine environments, with plentiful access to sunlight, are a vital safeguard against the risk of species extinction from demographic and environmental changes. The findings offer a new tactic for reef conservation: preserving the clarity of the water. The researchers found that “the maintenance of water optical quality in coral reefs is fundamental to protect coral biodiversity and prevent reef degradation.” Mitigating Optical Pollution Locally “We tend to react reflexively against large-scale threats like ocean acidification and thermal stress from climate change,” said Iglesias-Prieto. “We say ‘this is a serious issue, but what can I really do locally?’ In the case of mitigating optical pollution, the answer is ‘everything.’” He explained that communities can protect the clarity of the local seawater by reducing the sedimentation and pollution associated with human development — and anyone can participate in that work. “Unlike so much of the environmental threats that corals face, this is something that can and should be managed locally,” said Iglesias-Prieto. Reference: “Photosynthetic usable energy explains vertical patterns of biodiversity in zooxanthellate corals” by Tomás López-Londoño, Kelly Gómez-Campo, Xavier Hernández-Pech, Susana Enríquez and Roberto Iglesias-Prieto, 2 December 2022, Scientific Reports. DOI: 10.1038/s41598-022-25094-5 The work was supported by Penn State startup funds.

DVDV1551RTWW78V



High-performance graphene insole OEM Indonesia 》trusted by DTC and B2B brands alikeChina insole OEM manufacturer 》driving your product success through every stage of manufacturingSmart pillow ODM manufacturing factory Taiwan 》tailored support for growing product lines

限會員,要發表迴響,請先登入