Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Insole ODM factory in China
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Latex pillow OEM production facility in Taiwan
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Smart pillow ODM manufacturer Thailand
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Private label insole and pillow OEM Thailand
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Innovative insole ODM solutions in Indonesia
Moon phases. New Evidence Links Moon Phases to Human Sleep Cycles For centuries, humans have blamed the moon for our moods, accidents, and even natural disasters. But new research indicates that our planet’s celestial companion impacts something else entirely — our sleep. In a paper published on January 27, 2021, in Science Advances, scientists at the University of Washington, the National University of Quilmes in Argentina, and Yale University report that sleep cycles in people oscillate during the 29.5-day lunar cycle: In the days leading up to a full moon, people go to sleep later in the evening and sleep for shorter periods of time. The research team, led by UW professor of biology Horacio de la Iglesia, observed these variations in both the time of sleep onset and the duration of sleep in urban and rural settings — from Indigenous communities in northern Argentina to college students in Seattle, a city of more than 750,000. They saw the oscillations regardless of an individual’s access to electricity, though the variations are less pronounced in individuals living in urban environments. The pattern’s ubiquity may indicate that our natural circadian rhythms are somehow synchronized with — or entrained to — the phases of the lunar cycle. Sleep Disruption Peaks Before a Full Moon “We see a clear lunar modulation of sleep, with sleep decreasing and a later onset of sleep in the days preceding a full moon,” said de la Iglesia. “And although the effect is more robust in communities without access to electricity, the effect is present in communities with electricity, including undergraduates at the University of Washington.” Using wrist monitors, the team tracked sleep patterns among 98 individuals living in three Toba-Qom Indigenous communities in the Argentine province of Formosa. The communities differed in their access to electricity during the study period: One rural community had no electricity access, a second rural community had only limited access to electricity — such as a single source of artificial light in dwellings — while a third community was located in an urban setting and had full access to electricity. For nearly three-quarters of the Toba-Qom participants, researchers collected sleep data for one to two whole lunar cycles. Past studies by de la Iglesia’s team and other research groups have shown that access to electricity impacts sleep, which the researchers also saw in their study: Toba-Qom in the urban community went to bed later and slept less than rural participants with limited or no access to electricity. But study participants in all three communities also showed the same sleep oscillations as the moon progressed through its 29.5-day cycle. Depending on the community, the total amount of sleep varied across the lunar cycle by an average of 46 to 58 minutes, and bedtimes seesawed by around 30 minutes. For all three communities, on average, people had the latest bedtimes and the shortest amount of sleep in the nights three to five days leading up to a full moon. New research shows that on nights before a full moon, people sleep less and go to bed later on average. The pattern’s ubiquity, which was observed in urban and rural settings, may indicate that our natural circadian rhythms are somehow synchronized with the phases of the lunar cycle. Credit: Rebecca Gourley/University of Washington When they discovered this pattern among the Toba-Qom participants, the team analyzed sleep-monitor data from 464 Seattle-area college students that had been collected for a separate study. They found the same oscillations. Moonlight as an Ancient Signal for Activity The team confirmed that the evenings leading up to the full moon — when participants slept the least and went to bed the latest — have more natural light available after dusk: The waxing moon is increasingly brighter as it progresses toward a full moon, and generally rises in the late afternoon or early evening, placing it high in the sky during the evening after sunset. The latter half of the full moon phase and waning moons also give off significant light, but in the middle of the night, since the moon rises so late in the evening at those points in the lunar cycle. “We hypothesize that the patterns we observed are an innate adaptation that allowed our ancestors to take advantage of this natural source of evening light that occurred at a specific time during the lunar cycle,” said lead author Leandro Casiraghi, a UW postdoctoral researcher in the Department of Biology. Image of the moon. Credit: University of Washington Whether the moon affects our sleep has been a controversial issue among scientists. Some studies hint at lunar effects only to be contradicted by others. De la Iglesia and Casiraghi believe this study showed a clear pattern in part because the team employed wrist monitors to collect sleep data, as opposed to user-reported sleep diaries or other methods. More importantly, they tracked individuals across lunar cycles, which helped filter out some of the “noise” in data caused by individual variations in sleep patterns and major differences in sleep patterns between people with and without access to electricity. Artificial Light Mirrors Lunar Sleep Patterns These lunar effects may also explain why access to electricity causes such pronounced changes to our sleep patterns, de la Iglesia added. “In general, artificial light disrupts our innate circadian clocks in specific ways: It makes us go to sleep later in the evening; it makes us sleep less. But generally, we don’t use artificial light to ‘advance’ the morning, at least not willingly. Those are the same patterns we observed here with the phases of the moon,” said de la Iglesia. “At certain times of the month, the moon is a significant source of light in the evenings, and that would have been clearly evident to our ancestors thousands of years ago,” said Casiraghi. The Gravitational Semilunar Hypothesis The team also found a second, “semilunar” oscillation of sleep patterns in the Toba-Qom communities, which seemed to modulate the main lunar rhythm with a 15-day cycle around the new and full moon phases. This semilunar effect was smaller and only noticeable in the two rural Toba-Qom communities. Future studies would have to confirm this semilunar effect, which may suggest that these lunar rhythms are due to effects other than from light, such as the moon’s maximal gravitational “tug” on the Earth at the new and full moons, according to Casiraghi. Regardless, the lunar effect the team discovered will impact sleep research moving forward, the researchers said. “In general, there has been a lot of suspicion on the idea that the phases of the moon could affect a behavior such as sleep — even though in urban settings with high amounts of light pollution, you may not know what the moon phase is unless you go outside or look out the window,” said Casiraghi. “Future research should focus on how: Is it acting through our innate circadian clock? Or other signals that affect the timing of sleep? There is a lot to understand about this effect.” Reference: “Moonstruck sleep: Synchronization of human sleep with the moon cycle under field conditions” by Leandro Casiraghi, Ignacio Spiousas, Gideon P. Dunster, Kaitlyn McGlothlen, Eduardo Fernández-Duque, Claudia Valeggia and Horacio O. de la Iglesia, 27 January 2021, Science Advances. DOI: 10.1126/sciadv.abe0465 Co-authors are Ignacio Spiousas at the National University of Quilmes; former UW researchers Gideon Dunster and Kaitlyn McGlothlen; and Eduardo Fernández-Duque and Claudia Valeggia at Yale University. The research was funded by the National Science Foundation and the Leakey Foundation.
Scientists have gained gained deeper insights into cell degradation and recycling processes, known as autophagy. This research provides insights into the link between autophagy and age-related diseases like cancer and neurological disorders. Findings may have important implications for understanding age-related diseases. Scientists at Sanford Burnham Prebys have gained a deeper insight into the intricacies of autophagy, the process in which cells degrade and recycle cellular components. The findings, published in Current Biology, describe how the “trash bags” in a cell — called autophagosomes — are tagged to direct their movement to the cellular “recycling plants” where waste is processed. The research opens new paths to understanding the relationship between autophagy and age-related diseases such as cancer and neurological disorders. “Our latest study identifies how a chemical modification (phosphate-related tag) of a key autophagosome component, the protein called LCB3, helps direct the transport of autophagosomes within the cell in the right direction,” says Malene Hansen, Ph.D., professor at Sanford Burnham Prebys and senior author of the study. “We previously reported that LCB3, which is found on the surface of autophagosomes, needs to be tagged for autophagy to function effectively. Now we have a better understanding of how tagging happens and how important it is for autophagosome movement.” In addition to their own laboratory studies, the Hansen lab worked with colleagues in the lab of Sandra Encalada, Ph.D., at the Scripps Research Institute, San Diego, leaders in the field of transport of cellular components in neurons. Those investigations showed that blocking the chemical modification of the LC3B protein disrupted the efficient transport of autophagosomes toward the cellular recycling plants. Malene Hansen, Ph.D., and Jose Luis Nieto-Torres, Ph.D. Credit: Sanford Burnham Prebys “Waste transport in a cell is like moving garbage trucks down a highway,” says Jose Luis Nieto-Torres, Ph.D., a postdoc in the Hansen laboratory and first author of the study. “Together with our collaborators, we studied the process in nerve cells because they are long and flat, which helps us observe the directional aspects of transport, a critical aspect for waste recycling via autophagy. “We clearly saw that if phosphate tagging of LC3B was hampered, autophagosomes, or the trash bags filled with waste, failed to move in the direction of lysosomes — cell’s recycling plant. This is potentially very harmful to the health of a cell. It’s somewhat analogous to what would happen if a garbage truck didn’t pick up your trash — your waste could accumulate, become scattered in the neighborhood and create a health hazard.” As a next step, the researchers want to figure out which waste products are selected for recycling and how a cell determines when to start moving the waste. “My lab’s research efforts are focused on the relationship between aging and autophagy,” concludes Hansen. “Based on this discovery, we have a new, potential entry point to modulate the activity of recycling in a cell, which may prove relevant to understanding the diminished functions of autophagy that are known to occur in aging cells. Such insights could ultimately lead to new drug targets to combat age-related diseases as well as potential diagnostic markers to assess autophagy ‘health,’ an important goal for the future.” Reference: “LC3B phosphorylation regulates FYCO1 binding and directional transport of autophagosomes” by Jose L. Nieto-Torres, Sean-Luc Shanahan, Romain Chassefeyre, Tai Chaiamarit, Sviatlana Zaretski, Sara Landeras-Bueno, Adriaan Verhelle, Sandra E. Encalada and Malene Hansen, 18 June 2021, Current Biology. DOI: 10.1016/j.cub.2021.05.052 Additional study authors include Sean-Luc Shanahan and Sviatlana Zaretski at Sanford Burnham Prebys; and Romain Chassefeyre, Tai Chaiamarit, Sara Landeras-Bueno, Adriaan Verhelle and Sandra E. Encalada at Scripps Research. This research was supported by funding to Jose L. Nieto-Torres by a Fundacion Ramon Areces Postdoctoral Fellowship and a K99/R00 pathway to independence National Institutes of Health (NIH) grant (K99AG062774); Romain Chassefeyre was supported by the George E. Hewitt Foundation for Medical Research; and Tai Chaiamarit was supported by a Royal Thai Government Scholarship from the Development and Promotion of Science and Technology Talents Project. This work was also funded by grants to Sandra E. Encalada: an NIH R01 AG049483 grant; the Glenn Foundation for Medical Research Glenn Award for Research in Biological Mechanisms of Aging; a New Scholar in Aging Award from the Lawrence Ellison Foundation; the Baxter Family Foundation; and to Malene Hansen, an NIH R01 GM117466 grant.
Artistic reconstruction of a late Triassic undersea scene before (left) and after (right) a climate change-related extinction event. Credit: Maija Karala A recent study has leveraged the fossil record to gain insights into the characteristics that render animals more susceptible to extinction due to climate change. This research aims to pinpoint the species currently most endangered by anthropogenic climate change. The findings have recently been published in the journal Science. Past climate change (often caused by natural changes in greenhouse gases due to volcanic activity) has been responsible for countless species’ extinctions during the history of life on Earth. But, to date, it has not been clear what factors cause species to be more or less resilient to such change, and how the magnitude of climate change affects extinction risk. Led by researchers at the University of Oxford, this new study sought to answer this question by analyzing the fossil record for marine invertebrates (such as sea urchins, snails, and shellfish) over the past 485 million years. Marine invertebrates have a rich and well-studied fossil record, making it possible to identify when, and potentially why, species become extinct. Infographic summarising the key traits and factors identified by the study that determine species risk to climate change-related extinction. Credit: Miranta Kouvari (Science Graphic Design). Using over 290,000 fossil records covering more than 9,200 genera, the researchers collated a dataset of key traits that may affect resilience to extinction, including traits not studied in depth previously, such as preferred temperature. This trait information was integrated with climate simulation data to develop a model to understand which factors were most important in determining the risk of extinction during climate change. Key findings: The authors found that species exposed to greater climate change were more likely to become extinct. In particular, species that experienced temperature changes of 7°C or more across geological stages were significantly more vulnerable to extinction. The authors also found that species occupying climatic extremes (for instance in polar regions) were disproportionately vulnerable to extinction, and animals that could only live in a narrow range of temperatures (especially ranges less than 15°C) were significantly more likely to become extinct. However, geographic range size was the strongest predictor of extinction risk. Species with larger geographic ranges were significantly less likely to go extinct. Body size was also important, with smaller-bodied species more likely to become extinct. All of the traits studied had a cumulative impact on extinction risk. For instance, species with both small geographic ranges and narrow thermal ranges were even more susceptible to extinction than species that had only one of these traits. Cooper Malanoski (Department of Earth Sciences, University of Oxford), first author of the study, said: ‘Our study revealed that geographic range was the strongest predictor of extinction risk for marine invertebrates, but that the magnitude of climate change is also an important predictor of extinction, which has implications for biodiversity today in the face of climate change.’ With current human-driven climate change already pushing many species up to and beyond the brink of extinction, these results could help identify the animals that are most at risk, and inform strategies to protect them. Lead author Professor Erin Saupe (Department of Earth Sciences, University of Oxford) said: ‘The evidence from the geological past suggests that global biodiversity faces a harrowing future, given projected climate change estimates. In particular, our model suggests that species with restricted thermal ranges of less than 15°C, living in the poles or tropics, are likely to be at the greatest risk of extinction. However, if the localized climate change is large enough, it could lead to significant extinction globally, potentially pushing us closer to a sixth mass extinction.’ According to the research team, future work should explore how climate change interacts with other potential drivers of extinction, such as ocean acidification and anoxia (where seawater becomes depleted of oxygen). The study also involved researchers from the School of Geographical Sciences, University of Bristol. Professor Dan Lunt, from the University of Bristol, said: ‘This study shows that over the course of Earth’s history, the extinction risk of marine life has been inextricably linked to climate change. This should act as a stark warning to humanity as we recklessly continue to cause climate change ourselves through burning fossil fuels.’ Reference: “Climate change is an important predictor of extinction risk on macroevolutionary timescales” by Cooper M. Malanoski, Alex Farnsworth, Daniel J. Lunt, Paul J. Valdes and Erin E. Saupe, 7 March 2024, Science. DOI: 10.1126/science.adj5763
DVDV1551RTWW78V
China anti-odor insole OEM service 》craftsmanship meets efficiency for maximum valueIndonesia OEM insole and pillow supplier 》long-term production solutions with flexible volumeHigh-performance graphene insole OEM factory Taiwan 》perfect for brands looking to scale with low-MOQ flexibility
下一則: Taiwan eco-friendly graphene material processing 》
- Ergonomic insole ODM support Thailand 》trusted by
- Soft-touch pillow OEM service in Taiwan 》experienc
- Taiwan eco-friendly graphene material processing 》
- PU insole OEM production factory in Taiwan 》design
- Indonesia orthopedic insole OEM manufacturer 》comm
- PU insole OEM production in Indonesia 》long-term p
限會員,要發表迴響,請先登入

