Contents ...
udn網路城邦
Indonesia OEM/ODM hybrid insole services 》driving
2025/05/01 22:42
瀏覽17
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Indonesia graphene sports insole ODM

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Taiwan insole ODM full-service provider factory

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Indonesia custom insole OEM supplier

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Indonesia eco-friendly graphene material processing

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Innovative insole ODM solutions in Indonesia

Seychelles Giant Tortoise. Credit: Anna Zora Researchers have captured on film the moment when a Seychelles giant tortoise, Aldabrachelys gigantea, attacked and ate a tern chick. This is the first documentation of deliberate hunting in any wild tortoise species. The hunting tortoise was seen in July 2020 on Frégate Island, a privately owned island in the Seychelles group managed for ecotourism, where around 3,000 tortoises live. Other tortoises in the same area have been seen making similar attacks. “The whole interaction took seven minutes and was quite horrifying.” Justin Gerlach “This is completely unexpected behavior and has never been seen before in wild tortoises,” said Dr. Justin Gerlach, Director of Studies at Peterhouse, Cambridge, and Affiliated Researcher at the University of Cambridge’s Museum of Zoology, who led the study. He added: “The giant tortoise pursued the tern chick along a log, finally killing the chick and eating it. It was a very slow encounter, with the tortoise moving at its normal, slow walking pace – the whole interaction took seven minutes and was quite horrifying.” The interaction was filmed by Anna Zora, conservation manager on Frégate Island and co-author of the study. “When I saw the tortoise moving in a strange way I sat and watched, and when I realized what it was doing I started filming,” said Zora. The finding was published recently in the journal Current Biology. All tortoises were previously thought to be vegetarian — although they have been spotted feeding opportunistically on carrion, and they eat bones and snail shells for calcium. But no tortoise species has been seen actively pursuing prey in the wild before. Credit: Anna Zora The researchers think that this entirely new hunting behavior was driven by the unusual combination of a tree-nesting tern colony and a resident giant tortoise population on the Seychelles’ Frégate island. Extensive habitat restoration on the island has enabled seabirds to recolonize, and there is a colony of 265,000 noddy terns, Anous tenuirostris. The ground under the colony is littered with dropped fish and chicks that have fallen from their nests. In most places, potential prey are too fast or agile to be caught by giant tortoises. The researchers say that the way the tortoise approached the chick on the log suggests this type of interaction happens frequently. On the Galapagos and Seychelles islands, giant tortoises are the largest herbivores and eat up to 11% of the vegetation. They also play an important role in dispersing seeds, breaking vegetation, and eroding rocks. “These days Frégate island’s combination of tree-nesting terns and giant tortoise populations is unusual, but our observation highlights that when ecosystems are restored totally unexpected interactions between species may appear; things that probably happened commonly in the past but we’ve never seen before,” said Gerlach. For more on this study, see Slow but Deadly: Watch This Tortoise Hunt a Baby Bird. Reference “Giant tortoises hunt and consume birds” by Anna Zora and Justin Gerlach, 23 August 2021, Current Biology. DOI: 10.1016/j.cub.2021.06.088 This research was supported by Fregate Island Foundation.

The researchers were able to monitor the virus’s growth in organoids derived from human intestinal cells. Pink and red show areas of SARS-CoV-2 infection. Credit: Mohammed Shahraz, Sergio Triana/EMBL; Camila Metz-Zumaran/Heidelberg University Scientists transform human intestinal cells into ‘mini guts’ to follow the infection process. In an effort to determine the potential for COVID-19 to begin in a person’s gut, and to better understand how human cells respond to SARS-CoV-2, the scientists used human intestinal cells to create organoids — 3D tissue cultures derived from human cells, which mimic the tissue or organ from which the cells originate. Their conclusions, published in the journal Molecular Systems Biology, indicate the potential for infection to be harbored in a host’s intestines and reveal intricacies in the immune response to SARS-CoV-2. “Previous research had shown that SARS-CoV-2 can infect the gut,” says Theodore Alexandrov, who leads one of the two EMBL groups involved. “However, it remained unclear how intestinal cells mount their immune response to the infection.” In fact, the researchers were able to determine the cell type most severely infected by the virus, how infected cells trigger an immune response, and — most interestingly — that SARS-CoV-2 silences the immune response in infected cells. These findings may shed light on the pathogenesis of SARS-CoV-2 infection in the gut, and indicate why the gut should be considered to fully understand how COVID-19 develops and spreads. According to Sergio Triana, lead author and a doctoral candidate in EMBL’s Alexandrov team, the researchers observed how infected cells seem to start a cascade of events that produce a signaling molecule called interferon. “Interestingly, although most cells in our mini guts had a strong immune response triggered by interferon, SARS-CoV-2-infected cells did not react in the same way and instead presented a strong pro-inflammatory response,” Sergio says. “This suggests that SARS-CoV-2 interferes with the host signaling to disrupt an immune response at the cellular level.” Coronaviruses, including SARS-CoV-2, cause infection by latching on to specific protein receptors found on the surface of certain cell types. Among these receptors is the protein ACE2. Interestingly, the researchers showed that the infection is not explained solely by the presence of ACE2 on the surface of the cells, highlighting our still limited knowledge about COVID-19, even after a year of tremendous research efforts worldwide. As the disease progressed in the organoids, the researchers used single-cell RNA sequencing, which involves several techniques to amplify and detect RNA. Among these single-cell technologies, Targeted Perturb-seq (TAP-seq) provided sensitive detection of SARS-CoV-2 in infected organoids. Lars Steinmetz’s research group at EMBL recently developed TAP-seq, which the researchers combined with powerful computational tools, enabling them to detect, quantify, and compare expression of thousands of genes in single cells within the organoids. “This finding could offer insights into how SARS-CoV-2 protects itself from the immune system and offer alternative ways to treat it,” Lars says. “Further study can help us understand how the virus grows and the various ways it impacts the human immune system.” Reference: “Single-cell analyses reveal SARS-CoV-2 interference with intrinsic immune response in the human gut” by Sergio Triana, Camila Metz-Zumaran, Carlos Ramirez, Carmon Kee, Patricio Doldan, Mohammed Shahraz, Daniel Schraivogel, Andreas R Gschwind, Ashwini K Sharma, Lars M Steinmetz, Carl Herrmann, Theodore Alexandrov, Steeve Boulant and Megan L Stanifer, 27 April 2021, Molecular Systems Biology. DOI: 10.15252/msb.202110232

Researchers have made progress against citrus greening disease by developing hybrid citrus trees that produce desirable orange-like fruit and resist the disease. Through genetic analysis, they’ve created tools for early flavor profile screening, marking a significant step in ensuring future hybrids combine disease tolerance with the essential sweet orange flavor. Antibiotic-resistant infection is projected to catch up to cancer as the leading cause of death by 2050, making understanding and limiting the spread of antibiotic-resistant bacteria a priority worldwide. In a paper recently published in the Proceedings of the National Academy of Sciences (PNAS), a research team co-led by Michael S. Gilmore, Ph.D., Chief Scientific Officer at Mass Eye and Ear, describes the discovery of 18 never-before-seen species of bacteria of the Enterococcus type that contain hundreds of new genes – findings that may offer new clues into antibiotic resistance as scientists hunt for ways to curb these infections. Enterococci are leading causes of multidrug-resistant infections, particularly following surgery and in hospitalized patients. The infections can be lethal and contribute to more than $30 billion annually in added healthcare costs. The Importance of Antibiotics “Over the past 75 years, antibiotics have saved hundreds of millions of lives and have contributed greatly to the success of all types of surgery,” said Gilmore, who also is director of the Infectious Disease Institute at Harvard Medical School. “Over the past 30 years, however, many of the most problematic bacteria have become increasingly resistant to antibiotics and this is now reaching crisis proportions. Our findings may improve understanding of how resistance genes spread to hospital bacteria and threaten human health.” Discovered in the 1920s, antibiotics like penicillin are compounds naturally produced by microbes in the soil. Gilmore notes that antibiotic-producing microbes thrive in rotting leaves and plant matter on the forest floor and give forest soil its smell. The Role of Insects in Antibiotic Resistance Gilmore and Ashlee Earl, Ph.D., director of the Bacterial Genomics Group at Broad, assembled an international team of scientists, including elite adventurers, to scour remote corners of the globe for scat, soil and other samples that would likely contain bacteria of the Enterococcus type. The diversity of specimens they collected spanned samples from penguins migrating through sub-Antarctic waters, duiker and elephants from Uganda; insects, bivalves, sea turtles, and wild turkeys from Brazil to the United States; kestrel and vultures from Mongolia; wallaby, swans, and wombats from Australia; and zoo animals and wild birds from Europe. The team’s collection efforts had previously led to the discovery of new classes of bacterial toxins and showed that Enterococcus bacteria arose about 425 million years ago when the first animals, ancestors of millipedes and worms, came onto land. They likely dominated the planet for about 50 million years before four-legged animals came ashore. Adventure Scientist Stevie Anna Plummer with scat and water samples collected during a 2016 Nepal expedition to collect samples for the Global Microbe Study. Credit: Adventure Scientists (photo by Paul Amos) Their most recent collections expanded the genus diversity of enterococcal strains by more than 25 percent and in doing so, uncovered more clues, revealing that insects and other invertebrates are likely by far the greatest natural source for enterococci bacteria, including species that are naturally antibiotic-resistant. “Until recently, most of what we’ve understood about the genetics of enterococcus come from those that make us sick, and that’s a problem — like trying to understand darkness without ever seeing the light,” said Earl. “Expanding our view to include those from outside of hospitals, with the help of citizen scientists, gave us the contrast we needed to identify how they make people sick in the hospital, and also gives the public the chance to co-own solutions.” Gilmore posits that insects have been eating the rotting plant material, and naturally giving themselves a dose of the antibiotics in the process. He hypothesizes that for hundreds of millions of years, bacteria in the guts of these insects like Enterococcus have been exposed to those antibiotics and have become resistant. In the 1940s and ’50s, when humans first began taking antibiotics, the resistances were already in the environment and worked their way into the bacteria that cause human infection. “The COVID-19 pandemic revealed that nature contains many infectious risks for humans,” said Gilmore. “This study shows that insects and their relatives in nature are a large and uncharacterized reservoir of undiscovered genes in microbes closely related to those that cause some of the most antibiotic-resistant infections.” Reference: “Global diversity of enterococci and description of 18 previously unknown species” by Julia A. Schwartzman, Francois Lebreton, Rauf Salamzade, Terrance Shea, Melissa J. Martin, Katharina Schaufler, Aysun Urhan, Thomas Abeel, Ilana L. B. C. Camargo, Bruna F. Sgardioli, Janira Prichula, Ana Paula Guedes Frazzon, Gonzalo Giribet, Daria Van Tyne, Gregg Treinish, Charles J. Innis, Jaap A. Wagenaar, Ryan M. Whipple, Abigail L. Manson, Ashlee M. Earl and Michael S. Gilmore, 28 February 2024, Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.2310852121 This project was supported by the Harvard-wide Program on Antibiotic Resistance, NIH/NIAID grant AI083214 and U19AI110818 to the Broad Institute. Portions of the work were supported by a Research Sabbatical grant to Gilmore from Research to Prevent Blindness to explore the origins of antibiotic resistance. Schwartzman was supported by the NIH Ruth Kirschstein fellowship F32GM121005.

DVDV1551RTWW78V



Flexible manufacturing OEM & ODM Vietnam 》performance-first thinking from development to deliveryODM pillow for sleep brands Taiwan 》your go-to partner for comfort-focused OEM/ODM solutionsLatex pillow OEM production in Taiwan 》supporting your ESG goals through sustainable production

限會員,要發表迴響,請先登入