Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
One-stop OEM/ODM manufacturing factory and solution provider
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Eco-friendly pillow OEM manufacturer Taiwan
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Thailand pillow ODM development service
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Smart pillow ODM manufacturer Vietnam
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.China graphene product OEM service
Researchers have identified a molecule essential for myelin repair. The discovery could have important implications for the health of aging brains and development of therapies for neurodegenerative diseases. Recent studies suggest that new brain cells are being formed every day in response to injury, physical exercise, and mental stimulation. Glial cells, and in particular the ones called oligodendrocyte progenitors, are highly responsive to external signals and injuries. They can detect changes in the nervous system and form new myelin, which wraps around nerves and provides metabolic support and accurate transmission of electrical signals. As we age, however, less myelin is formed in response to external signals, and this progressive decline has been linked to the age-related cognitive and motor deficits detected in older people in the general population. Impaired myelin formation also has been reported in older individuals with neurodegenerative diseases such as Multiple Sclerosis or Alzheimer’s and identified as one of the causes of their progressive clinical deterioration. A new study from the Neuroscience Initiative team at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC) has identified a molecule called ten-eleven-translocation 1 (TET1) as a necessary component of myelin repair. The research, published today (June 7, 2021) in Nature Communications, shows that TET1 modifies the DNA in specific glial cells in adult brains so they can form new myelin in response to injury. In young adult mice (left), TET1 is active in oligodendroglial cells especially after injury and this leads to new myelin formation and healthy brain function. In old mice (right), the age-related decline of TET1 levels impairs the ability of oligodendroglial cells to form functional new myelin. The authors are currently investigating whether increasing TET1 levels in older mice could rejuvenate the oligodendroglial cells and restore their regenerative functions. Credit: Sarah Moyon “We designed experiments to identify molecules that could affect brain rejuvenation,” said Sarah Moyon, Ph.D., a research assistant professor with the CUNY ASRC Neuroscience Initiative and the study’s lead author. “We found that TET1 levels progressively decline in older mice, and with that, DNA can no longer be properly modified to guarantee the formation of functional myelin.” Combining whole-genome sequencing bioinformatics, the authors showed that the DNA modifications induced by TET1 in young adult mice were essential to promote a healthy dialogue among cells in the central nervous system and for guaranteeing proper function. The authors also demonstrated that young adult mice with a genetic modification of TET1 in the myelin-forming glial cells were not capable of producing functional myelin, and therefore behaved like older mice. “This newly identified age-related decline in TET1 may account for the inability of older individuals to form new myelin,” said Patrizia Casaccia, founding director of the CUNY ASRC Neuroscience Initiative, a professor of Biology and Biochemistry at The Graduate Center, CUNY, and the study’s primary investigator. “I believe that studying the effect of aging in glial cells in normal conditions and in individuals with neurodegenerative diseases will ultimately help us design better therapeutic strategies to slow the progression of devastating diseases like multiple sclerosis and Alzheimer’s.” The discovery also could have important implications for molecular rejuvenation of aging brains in healthy individuals, said the researchers. Future studies aimed at increasing TET1 levels in older mice are underway to define whether the molecule could rescue new myelin formation and favor proper neuro-glial communication. The research team’s long-term goal is to promote recovery of cognitive and motor functions in older people and in patients with neurodegenerative diseases. Reference: “TET1-mediated DNA hydroxymethylation regulates adult remyelination in mice” by Sarah Moyon, Rebecca Frawley, Damien Marechal, Dennis Huang, Katy L. H. Marshall-Phelps, Linde Kegel, Sunniva M. K. Bøstrand, Boguslawa Sadowski, Yong-Hui Jiang, David A. Lyons, Wiebke Möbius and Patrizia Casaccia, 7 June 2021, Nature Communications. DOI: 10.1038/s41467-021-23735-3
A highly detailed ‘wiring diagram’ of the human brain reveals the multitude of various connections. Credit: Human Connectome Project Mapping the Brain’s Memory Hub Australian scientists have created the most detailed map ever of the communication links between the hippocampus, the brain’s memory control center, and the rest of the brain, potentially revolutionizing our understanding of human memory. “We were surprised to find fewer connections between the hippocampus and frontal cortical areas, and more connections with early visual processing areas than we expected to see,” said Dr. Marshall Dalton, a Research Fellow in the School of Psychology at the University of Sydney. “Although, this makes sense considering the hippocampus plays an important role not only in memory but also imagination and our ability to construct mental images in our mind’s eye.” Located within the brain, the hippocampus is a complex structure that resembles a seahorse. It is essential for the brain and plays a crucial role in memory formation as well as the transfer of memories from short-term to long-term storage. In addition to these functions, the hippocampus also plays a role in navigation, the ability to imagine future or fictitious experiences, the creation of mental imagery, and even in visual perception and decision-making. Graphic showing the mapping process of the hippocampus undertaken by the University of Sydney team. Credit: Marshall Dalton/ University of Sydney To generate their map, the team – led by Dr. Dalton and including Dr. Arkiev D’Souza, Dr. Jinglei Lv, and Professor Fernando Calamante from the University of Sydney’s Brain and Mind Centre – relied on MRI scans from a neuroimaging database created for the Human Connectome Project (HCP), a research consortium led by the U.S. National Institutes of Health. They processed the existing HCP data using tailored techniques that they developed. This allowed them to follow the connections from all corners of the brain to their termination points in the hippocampus – something that had never been accomplished before in the human brain. Most Detailed Map to Date “What we’ve done is take a much more detailed look at the white matter pathways, which are essentially the highways of communication between different areas of the brain,” said Dr Dalton. “And we developed a new approach that allowed us to map how the hippocampus connects with the cortical mantle, the outer layer of the brain, but in a very detailed way. “What we’ve created is a highly detailed map of white matter pathways connecting the hippocampus with the rest of the brain. It’s essentially a roadmap of brain regions that directly connect with the hippocampus and support its important role in memory formation.” High-resolution image of the ‘wiring diagram’ of a human brain revealing connections to the hippocampus. Credit: Marshall Dalton/ University of Sydney Technical limitations inherent to previous MRI investigations of the human hippocampus meant it was only possible to visualize its connections in very broad terms. “But we have now developed a tailored method that allows us to confirm where within the hippocampus different cortical areas are connecting. And that hasn’t been done before in a living human brain,” said Dr. Dalton. Unexpected Results The team was delighted their results largely aligned with data from previous studies overseas over the past few decades, which had relied on post-mortem studies of primate brains. However, the University of Sydney team found that the number of connections between the hippocampus and some brain areas was either much lower (in the case of frontal cortical areas) or higher (in the case of visual processing areas) than expected. This could indicate that although some pathways were conserved as humans evolved, human brains may also have developed unique patterns of connectivity different from other primates. Further research is needed to tease this apart in more detail. A mass of white matter tracts in the human brain. Credit: USC Stevens Neuroimaging and Informatics Institute These differences in connectivity may just be a limitation of the MRI technique – or it could be real. They may, for example, help explain why some of our primate cousins – especially chimpanzees – are better at some memory tasks than humans, especially those relying on short-term memory. Chimpanzees have bested humans at cognitive tasks involving a form of mathematics known as game theory, which relies on short-term memory, pattern recognition, and rapid visual assessment. “Although we have achieved this high-resolution mapping of the human hippocampus, the tract-tracing method conducted on non-human primates – which can see down to the cellular level – is able to see more connections than can be discerned with an MRI,” mused Dr. Dalton. “Or it could be that the human hippocampus really does have a smaller number of connections with frontal areas than we expect, and greater connectivity with visual areas of the brain. As the neocortex expanded, perhaps humans evolved different patterns of connectivity to facilitate human-specific memory and visualization functions which, in turn, may underpin human creativity. “It’s a bit of a puzzle – we just don’t know. But we love puzzles and will keep investigating.” Reference: “New insights into anatomical connectivity along the anterior–posterior axis of the human hippocampus using in vivo quantitative fibre tracking” by Marshall A. Dalton, Arkiev D’Souza, Jinglei Lv, Fernando Calamante, 8 November 2022, eLife. DOI: 10.7554/eLife.76143 The study was funded by the National Health and Medical Research Council and the Australian Research Council.
Fluorescent microscopy image of the new cells (extraembryonic mesoderm cells) and placenta progenitor stem cells. The new cells are marked in red, and cells corresponding to placental stem cells are shown in green. The DNA (nucleus) of each cell is shown in blue. Credit: Amitesh Panda (KU Leuven) The New Model Cells Aid in the Study of Early Embryonic Development Professor Vincent Pasque and his colleagues at KU Leuven have used stem cells to create a new kind of human cell in the lab. The new cells closely mirror their natural counterparts in early human embryos. As a result, scientists are better able to understand what occurs just after an embryo implants in the womb. The was recently published in the journal Cell Stem Cell. A human embryo implants in the womb around seven days after fertilization if everything goes correctly. Due to technological and ethical constraints, the embryo becomes unavailable for study at that point. That is why scientists have already created stem cell models for various kinds of embryonic and extraembryonic cells in order to investigate human development in a dish. From left to right: Bradley Balaton, Thi Xuan Ai Pham, Amitesh Panda, and Vincent Pasque. Credit: KU Leuven Development of the First Extraembryonic Mesoderm Cell Model Vincent Pasque’s team at KU Leuven has developed the first model for a specific type of human embryo cells, extraembryonic mesoderm cells. Professor Pasque: “These cells generate the first blood in an embryo, help to attach the embryo to the future placenta, and play a role in forming the primitive umbilical cord. In humans, this type of cell appears at an earlier developmental stage than in mouse embryos, and there might be other important differences between species. That makes our model especially important: research in mice may not give us answers that also apply to humans.” The model cells were created by the researchers using human stem cells, which can still grow into all cell types in an embryo. The new cells closely resemble their natural counterparts in human embryos and hence serve as an excellent model for that cell type. “You don’t make a new human cell type every day,” Pasque continues. “We are very excited because now we can study processes that normally remain inaccessible during development. In fact, the model has already enabled us to find out where extraembryonic mesoderm cells come from. In the longer term, our model will hopefully also shed more light on medical challenges such as fertility problems, miscarriages, and developmental disorders.” Reference: “Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells” by Thi Xuan Ai Pham, Amitesh Panda, Harunobu Kagawa, San Kit To, Cankat Ertekin, Grigorios Georgolopoulos, Sam S.F.A. van Knippenberg, Ryan Nicolaas Allsop, Alexandre Bruneau, Jonathan Sai-Hong Chui, Lotte Vanheer, Adrian Janiszewski, Joel Chappell, Michael Oberhuemer, Raissa Songwa Tchinda, Irene Talon, Sherif Khodeer, Janet Rossant, and Vincent Pasque, 1 September 2022, Cell Stem Cell. DOI: 10.1016/j.stem.2022.08.001
DVDV1551RTWW78V
Thailand pillow OEM manufacturer 》your go-to partner for comfort-focused OEM/ODM solutionsGraphene cushion OEM factory in China 》a manufacturing partner you can rely on for quality and deliveryODM pillow for sleep brands Indonesia 》where every detail is tailored to your brandis identity
下一則: One-stop OEM/ODM manufacturing factory and solutio
- ODM pillow for sleep brands China 》designed for qu
- ODM service for ergonomic pillows Taiwan 》dedicate
- China OEM/ODM hybrid insole services 》helping your
- Graphene sheet OEM supplier factory Taiwan 》experi
- Custom foam pillow OEM in Indonesia 》the preferred
- Cushion insole OEM manufacturing facility Taiwan 》
限會員,要發表迴響,請先登入

