Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Graphene sheet OEM supplier China
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Arch support insole OEM from China
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.China foot care insole ODM expert
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Taiwan insole ODM full-service provider factory
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Thailand eco-friendly graphene material processing
New research reveals how dendrites control neuronal response variability, providing significant implications for learning, memory, and AI development, and marking a pivotal advancement in neuroscience. Dr. Richard Naud’s research at the University of Ottawa holds important implications for understanding learning and memory theories, and it may pave the way for advancements in artificial intelligence in the future. The mysteries of the human brain’s internal mechanisms are slowly being uncovered, and a significant new study led by Dr. Richard Naud from the Faculty of Medicine at the University of Ottawa is bringing us nearer to solving these profound questions. The study’s results have important implications for theories of learning and working memory and could potentially help lead to future developments in artificial intelligence (AI) since AI developers and programmers watch the work of Dr. Naud and other leading neuroscientists. Published in Nature Computational Science, the study tackles the many-layered mystery of the “response variability” of neurons, brain cells that use electric signals and chemicals to process information and greenlights all the remarkable aspects of human consciousness. The findings unveil the nuts and bolts of how neuronal variability is controlled by dendrites, the antenna that reaches out from each neuron to receive synaptic inputs in our own personal neural communication networks. The rigorous study establishes properties of dendrites that potently control output variability, a property that’s been shown to control synaptic plasticity in the brain. Insights into Neuronal Control “The intensity of a neuron’s response is controlled by inputs to its core, but the variability of a neuron’s response is controlled by the inputs to its little antennas – the dendrites,” says Dr. Naud, an Associate Professor at the Faculty of Medicine’s Department of Cellular and Molecular Medicine and the uOttawa Department of Physics . “This study establishes more precisely how single neurons can have this crucial property of controlling response variability with their inputs.” Dr. Richard Naud (left), an associate professor at the University of Ottawa’s Faculty of Medicine’s Department of Cellular and Molecular Medicine and the uOttawa Department of Physics. Credit: University of Ottawa Dr. Naud suspected that if a mathematical framework he’d used to describe the cell body of neurons was extended to take their dendrites into account, then they might have luck efficiently simulating networks of neurons with active dendrites. Cue the contribution of Zachary Friedenberger, a Ph.D. student at the Department of Physics and a member of Dr. Naud’s lab, with a background in theoretical physics to solve the theoretical challenges and the math in a record time. Fast forward to the completed study: The predictions of the model were validated by analysis of in vivo recording data and observed over a wide range of model parameters. “He managed to solve the math in a record time and solved a number of theoretical challenges I had not foreseen,” Dr. Naud says. Dr. Naud believed that their technique could provide insight on the neuronal response to variable inputs. So they began working on a technique that would be able to compute statistics from a neuronal model with an active dendrite. One of the work’s reviewers noted that the theoretical analysis “provides key insight into biological computation and will be of interest to a broad audience of computational and experimental neuroscientists.” Reference: “Dendritic excitability controls overdispersion” by Zachary Friedenberger and Richard Naud, 27 December 2023, Nature Computational Science. DOI: 10.1038/s43588-023-00580-6
Lifelong production of sperm is made possible by a newly discovered stem cell regulator. According to research conducted by the University of Pennsylvania, the enzyme DOT1L, a stem cell self-renewal factor, is necessary for mice to continue producing sperm throughout adulthood. Men may continue to generate sperm throughout their adult life, in contrast to women who are born with all the eggs they will ever have. To do so, they must constantly renew the spermatogonial stem cells that give birth to sperm. According to research by Jeremy Wang of the University of Pennsylvania School of Veterinary Medicine and colleagues, this stem cell renewal is dependent on a recently identified stem cell self-renewal factor known as DOT1L. The scientists demonstrated that animals lacking DOT1L are unable to retain spermatogonial stem cells, which affects their ability to constantly make sperm. The finding, which was reported in the journal Genes and Development, adds another entity to the handful of stem cell renewal factors that have already been identified by scientists. “This novel factor was only able to be identified by finding this unusual phenotype: the fact that mice lacking DOT1L were not able to continue to produce sperm,” says Wang, the Ralph L. Brinster President’s Distinguished Professor at Penn Vet and a corresponding author on the paper. “Identifying this essential factor not only helps us understand the biology of adult germline stem cells but could also allow us to one day reprogram somatic cells, like a type of skin cell called fibroblasts, to become germline stem cells, essentially creating a gamete in a petri dish. That is the next frontier for fertility treatment.” When the enzyme DOT1L is not functional, spermatogonial stem cells become exhausted, leading to a failure of sperm cell development. This crucial role for DOT1L places it in rarefied company as one of just a handful of known stem cell self-renewal factors, a Penn Vet team found. Credit: Jeremy Wang The Role of DOT1L in Sperm Production The function of DOT1L in stem cell self-renewal was accidentally discovered by the researchers. The gene is widely expressed; mice with a mutant form of DOT1L in every cell do not survive beyond the embryonic stage. However, Wang and colleagues hypothesized that DOT1L could be involved in meiosis, the process of cell division that results in sperm and eggs, based on the genetic expression patterns of DOT1L. So they made the decision to investigate what would happen if they mutated the gene only in these germ cells. “When we did this, the animals lived and appeared healthy,” Wang says. “When we looked closer, however, we found that the mice with the mutant DOT1L in their germ cells could complete an initial round of sperm production, but then the stem cells became exhausted and the mice lost all germ cells.” This drop-off in sperm production could arise due to other problems. But various lines of evidence supported the link between DOT1L and a failure of stem cell self-renewal. In particular, the researchers found that the mice experienced a sequential loss of the various stages of sperm development, first failing to make spermatogonia and then spermatocytes, followed by round spermatids, and then elongated spermatids. In a further experiment, the researchers observed what happened when DOT1L was inactivated in germ cells not from birth, but during adulthood. As soon as Wang and colleagues triggered the DOT1L loss, they observed the same sequential loss of sperm development they had seen in the mice born without DOT1L in their germ cells. Previously, other scientific groups have studied DOT1L in the context of leukemia. Overexpression of the gene in the progenitors of blood cells can lead to malignancy. From that line of investigation, it was known that DOT1L acts as a histone methyltransferase, an enzyme that adds a methyl group to histones to influence gene expression. DOT1L’s Mechanism: Histone Methylation and Gene Regulation To see whether the same mechanism was responsible for the results Wang and his team had observed in sperm development, the researchers treated spermatogonial stem cells with a chemical that blocks the methyltransferase activity of DOT1L. When they did so, the stem cells’ ability to give rise to spermatogonia was significantly reduced. The treatment also impaired the ability of stem cells to tag histones with a methyl group. And when these treated stem cells were transplanted into otherwise healthy mice, the animals’ spermatogonial stem cell activity was cut in half. The team found that DOT1L appeared to be regulating a gene family known as Hoxc, transcription factors that play significant roles in regulating the expression of a host of other genes. “We think that DOT1L promotes the expression of these Hoxc genes by methylating them,” says Wang. “These transcription factors probably contribute to the stem cell self-renewal process. Finding out the details of that is a future direction for our work.” A longer-term goal is to use factors like DOT1L and others involved in germline stem cell self-renewal to help people who have fertility challenges. The concept is to create germ cells from the ground up. “That’s the future of this field: in vitro gametogenesis,” Wang says. “Reprogramming somatic cells to become spermatogonial stem cells is one of the steps. And then we’d have to figure out how to have those cells undergo meiosis. We’re in the early stages of envisioning how to accomplish this multi-step process, but identifying this self-renewal factor brings us one step closer.” Reference: “Histone methyltransferase DOT1L is essential for self-renewal of germline stem cells” by Huijuan Lin, Keren Cheng, Hiroshi Kubota, Yemin Lan, Simone S. Riedel, Kazue Kakiuchi, Kotaro Sasaki, Kathrin M. Bernt, Marisa S. Bartolomei, Mengcheng Luo and P. Jeremy Wang, 23 June 2022, Genes & Development. DOI: 10.1101/gad.349550.122 The study was funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Natural Science Foundation of China, the China Scholarship Council, and the Japan Society for the Promotion of Science.
Researchers from McLean Hospital and collaborating institutions have discovered shared and distinct molecular changes in brain regions, genomic layers, cell types, and blood of individuals with PTSD and MDD, offering new insights for therapeutic and diagnostic advancements. Credit: SciTechDaily Study reveals molecular distinctions and similarities in PTSD and depression, highlighting potential therapeutic targets and biomarkers. A comprehensive examination of multiple biological processes is essential for understanding the development of stress-related disorders. Recent research conducted by scientists at McLean Hospital, along with collaborators from The University of Texas at Austin and Lieber Institute for Brain Development, has revealed both shared and unique molecular changes in brain regions, genomic layers, cell types, and blood among individuals with posttraumatic stress disorder (PTSD) and major depressive disorder (MDD). These findings, published in Science, could pave the way for innovative treatments and biomarkers. The Complexity of PTSD Explored “PTSD is a complex pathological condition. We had to extract information across multiple brain regions and molecular processes to capture the biological networks at play,” explained lead author Nikolaos P. Daskalakis, MD, PhD. Stress-related disorders develop over time, stemming from epigenetic modifications caused by the interplay between genetic susceptibility and traumatic stress exposure. Although previous research has identified factors such as hormonal, immune, methylomic, and transcriptomic influences, the limited availability of postmortem brain tissues from PTSD patients has hindered a comprehensive understanding of these brain-based molecular changes. Multi-omics Approach to Studying PTSD and Depression “Our primary goals for this study were to interpret and integrate differential gene and protein expression, epigenetic alterations and pathway activity across our postmortem brain cohorts in PTSD, depression and neurotypical controls,” said senior author Kerry Ressler, MD, PhD, chief scientific officer and director of Division of Depression and Anxiety Disorders and Neurobiology of Fear Laboratory at McLean Hospital, and a professor of psychiatry at Harvard Medical School. “We essentially combined circuit biology with powerful multi-omics tools to delve into the molecular pathology behind these disorders.” For this, the team analyzed multi-omic data from 231 PTSD, MDD, and neurotypical control subjects, along with 114 individuals from replication cohorts for differences in three brain regions — the medial prefrontal cortex (mPFC), hippocampal dentate gyrus (DG) and central nucleus of the amygdala (CeA). They also performed single-nucleus RNA sequencing (snRNA-seq) of 118 PFC samples to study cell-type-specific patterns and evaluated blood-based proteins in more than 50,000 UK Biobank participants to isolate key biomarkers associated with stress-related disorders. Finally, the overlap of these key brain-based disease process genes was compared with genome-wide association studies (GWAS)-based risk genes to identify PTSD and MDD risk. Molecular Variations and Disease Mechanisms Individuals with PTSD and MDD shared altered gene expression and exons in the mPFC but differed in the localization of epigenetic changes. Further analysis revealed that a history of childhood trauma and suicide were strong drivers of molecular variations in both disorders. The authors noted that MDD disease signals were more strongly associated with male-specific results, suggesting that sex differences may underlie disease risk. Top disease-associated genes and pathways across regions, omics, and/or traits implicated biological processes in both neuronal and non-neuronal cells. These included molecular regulators and transcription factors, and pathways involved in immune function, metabolism, mitochondria function, and stress hormone signaling. Implications for Diagnostic and Therapeutic Advances “Understanding why some people develop PTSD and depression and others don’t is a major challenge,” said investigator Charles B. Nemeroff, M.D., PhD, chair of the Department of Psychiatry and Behavioral Sciences at Dell Medical School of UT Austin. “We found that the brains of people with these disorders have molecular differences, especially in the prefrontal cortex. These changes seem to affect things like our immune system, how our nerves work, and even how our stress hormones behave.” The genetic components of the work built on a study published last month by researchers including Ressler and Daskalakis in Nature Genetics, in which they identified 95 locations, or loci in the genome (including 80 new) associated with PTSD. Their multi-omic analyses found 43 potential causal genes for the disorder. The researchers now could reveal only limited overlap between the top genes and those implicated in GWAS studies, underscoring the gap in current understanding between disease risk and underlying disease processes. In contrast, they discovered greater correlations between brain multi-omics and blood markers. “Our findings support the development of brain-informed blood biomarkers for real-time profiling,” said Daskalakis. Ressler added, “These biomarkers could help overcome current challenges in obtaining brain biopsies for advancing new treatments.” Future Directions Limitations of the study include the inherent biases in postmortem brain research, including population selection, clinical assessment, comorbidities, and end-of-life state. The authors also caution that they did not fully characterize all cell subtypes and cell states and that future studies are required to understand contrasting molecular signals across omics or brain regions. The team plans on using this database as groundwork for future analysis of how genetic factors interact with environmental variables to create downstream disease effects. “Learning more about the molecular basis of these conditions, PTSD and MDD, in the brain paves the way for discoveries that will lead to more effective therapeutic and diagnostic tools. This work was possible because of the brain donations to the Lieber Institute Brain Repository from families whose loved ones died of these conditions,” said Joel Kleinman, MD, PhD, associate director of Clinical Sciences at the Lieber Institute for Brain Development. “We hope our research will one day bring relief to individuals who struggle with these disorders and their loved ones.” For more on this research, see New Molecular Insights Into PTSD and Depression. Reference: “Systems biology dissection of PTSD and MDD across brain regions, cell types, and blood” by Nikolaos P. Daskalakis, Artemis Iatrou, Chris Chatzinakos, Aarti Jajoo, Clara Snijders, Dennis Wylie, Christopher P. DiPietro, Ioulia Tsatsani, Chia-Yen Chen, Cameron D. Pernia, Marina Soliva-Estruch, Dhivya Arasappan, Rahul A. Bharadwaj, Leonardo Collado-Torres, Stefan Wuchty, Victor E. Alvarez, Eric B. Dammer, Amy Deep-Soboslay, Duc M. Duong, Nick Eagles, Bertrand R. Huber, Louise Huuki, Vincent L. Holstein, Mark W. Logue, Justina F. Lugenbühl, Adam X. Maihofer, Mark W. Miller, Caroline M. Nievergelt, Geo Pertea, Deanna Ross, Mohammad S. E. Sendi, Benjamin B. Sun, Ran Tao, James Tooke, Erika J. Wolf, Zane Zeier, PTSD Working Group of Psychiatric Genomics Consortium**, Sabina Berretta, Frances A. Champagne, Thomas Hyde, Nicholas T. Seyfried, Joo Heon Shin, Daniel R. Weinberger, Charles B. Nemeroff, Joel E. Kleinman and Kerry J. Ressler, 24 May 2024, Science. DOI: 10.1126/science.adh3707 Disclosures: Nikolaos P. Daskalakis is on the scientific advisory boards for BioVie Inc., Circular Genomics, Inc., and Feel Therapeutics, Inc.; Daniel R. Weinberger is on the advisory boards of Pasithea Therapeutics and Sage Therapeutics for unrelated work; Duc M. Duong is a cofounder of ARC Proteomics, and cofounder and paid consultant of Emtherapro Inc.; Chia-Yen Chen is an employee of Biogen Inc.; Mohammad S. E Sendi receives consulting fees for unrelated work from Niji Corp, Benjamin B. Sun is an employee and stockholder of Biogen Inc.; Kerry J. Ressler has received consulting income from Alkermes and sponsored research support from Brainsway and Takeda, and is on the scientific advisory boards for Janssen, Verily, and Resilience Therapeutics for unrelated work. Funding: This work was supported by grants from NIMH, the Brain & Behavior Research Foundation, Stichting Universitas / the Bontius Foundation, the Dutch Research Council (NWO) fund, and McLean Hospital.
DVDV1551RTWW78V
Graphene-infused pillow ODM Vietnam 》perfect for brands looking to scale with low-MOQ flexibilityInnovative insole ODM solutions in China 》where every detail is tailored to your brandis identityODM service for ergonomic pillows Indonesia 》where form meets function, every step of the way
下一則: PU insole OEM production in Taiwan 》reducing compl
- Graphene insole manufacturer in Indonesia 》trusted
- Vietnam graphene sports insole ODM 》designed for q
- PU insole OEM production in Taiwan 》reducing compl
- Latex pillow OEM production in Taiwan 》elevating y
- High-performance graphene insole OEM Indonesia 》wh
- Private label insole and pillow OEM Vietnam 》recom
限會員,要發表迴響,請先登入

