Contents ...
udn網路城邦
Orthopedic pillow OEM solutions China 》flexible, e
2025/05/05 23:51
瀏覽15
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Taiwan insole ODM design and production

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.China graphene product OEM service

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Taiwan graphene material ODM solution

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Taiwan insole OEM manufacturer

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Graphene cushion OEM factory in China

MIT researchers studied a single neuron in the C. elegans worm, discovering its role in regulating multiple behaviors. This neuron utilizes various neurotransmitters and can “borrow” serotonin, potentially providing insights into psychiatric treatments in more complex organisms. Study finds that in worms, the HSN neuron uses multiple chemicals and connections to orchestrate egg-laying and locomotion over the course of several minutes. A new MIT study that focuses on a single cell in one of nature’s simplest nervous systems provides an in-depth illustration of how individual neurons can use multiple means to drive complex behaviors. In the C. elegans worm, which only has 302 nerve cells, the neuron HSN releases several chemicals and makes multiple connections along its length to not only control the animal’s instantaneous egg laying and locomotion, but also to then slow the worm down for several minutes after the eggs are laid. To control that latter phase of the behavior, HSN transfers the neurotransmitter serotonin to a fellow neuron, which re-releases it to influence behavior minutes later. “Our results reveal how a single neuron can influence a broad suite of behaviors over multiple timescales and show that neurons can ‘borrow’ serotonin from one another to control behavior,” the researchers report in Current Biology. The study’s senior author is Steven Flavell, associate professor in The Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences. Postdoc Yung-Chi Huang is the study’s first author. In a C. elegans worm, the neuron HSN has a critical role in directing several coordinated behaviors. This image labels HSN in green, showing its extension all the way to the worm’s head (labeled in red). Credit: Flavell Lab/Picower Institute A Busy Neuron Heading into the study, HSN’s connections to other neurons had already been mapped (C. elegans is the only animal where the full connectome among neurons is known), and it had also been associated with egg-laying. Flavell’s lab, meanwhile, has observed that when the worms lay eggs, they speed across patches of food a bit like a farmer will drive a tractor to disperse seeds throughout fertile soil. Moreover, scientists had observed that when HSN is ablated, worms don’t engage in a characteristic feeding behavior of slowing down to dine on patches of food. But how this single neuron had these seemingly paradoxical effects on behavior (egg laying, speeding up to do that, and slowing down after) remained a mystery. Flavell and Huang’s team employed a wide variety of techniques and experiments to discover how HSN does its many jobs. To establish that HSN indeed has a causal role in controlling these behaviors, they manipulated the neuron’s activity using optogenetics, a technique in which cells are genetically engineered to be controlled by flashes of light. In addition to confirming HSN’s key role in egg laying, these and other genetic manipulation experiments also confirmed that HSN causes the worm to speed up and then, after a bout of roaming and egg laying, to slow down for several minutes. The lab also tracked the electrical activity of HSN during these behaviors (by tracking the flow of calcium ions within the cell as animals freely moved) and saw that specific patterns of the cell’s activity were associated with egg laying and locomotion. Many Molecular Means Having established that HSN causes the three related behaviors, the lab then zeroed in on how it does so. HSN is known to release a wide variety of neurotransmitter chemicals including serotonin, acetylcholine, and numerous peptides. Its release of serotonin and a neuropeptide called NLP-3 is known to drive egg-laying. To determine how the neuron drives speedy locomotion, the team systematically knocked out each HSN neurotransmitter and then stimulated HSN to see whether the worms could still speed up when HSN couldn’t produce one chemical or the other. The experiments revealed that HSN drives increased locomotion via the release of two neuropeptides, called FLP-2 and FLP-28. Knocking out serotonin in HSN, meanwhile, disabled the worm’s slowing behavior. Further experiments showed how. Flavell’s team has previously studied the neuron NSM, showing that it uses serotonin when a worm is feeding to inhibit motor circuits and slow the worm down for the meal. In this study, the team showed that NSM’s action depended on a supply of serotonin coming from HSN. When HSN couldn’t produce serotonin, for instance, NSM couldn’t slow the worms down as well. The team further showed that NSM uses the serotonin transporter SERT (called MOD-5 in C. elegans) to take up HSN’s serotonin and re-release it. This showed that serotonergic neurons can pool and share serotonin with one another, with a direct impact on the animal’s behavior, Flavell says. Anatomical Analysis Turning to HSN’s anatomy, the team discerned that control of locomotion and control of egg-laying occurred along different points of HSN’s axon. HSN’s cell body is in the midbody of the animal. It forms synapses with the egg-laying circuit in the midbody and then its axon projects to the head to make synapses with other neurons. Cutting HSN’s axon between the midbody and head did not disrupt the animal’s egg-laying, but did prevent the coordination of egg-laying and locomotion, suggesting that HSN’s projection to the head coordinates HSN’s action on the egg-laying circuit with its action on the locomotion circuit. In all, the study showed how HSN uses many parallel neurotransmitter outputs in different ways to control the animal’s behavior. “Our results illustrate how cellular morphology, multiple transmitter systems, and non-canonical modes of transmission like neurotransmitter “borrowing” endow a single neuron with the ability to orchestrate multiple features of a behavioral program,” the authors wrote. Meanwhile, the finding that neurons can take up and re-release serotonin produced by other neurons to control behavior reveals a novel feature of serotonin signaling that could have important medical implications, Flavell says. The molecule that takes up the serotonin, SERT/MOD-5, is the target of serotonin-specific reuptake inhibitors (SSRIs) like Prozac. This study raises the possibility that SSRIs may influence how neurons share serotonin with one another, which could be relevant for their mode of action in treating a wide variety of psychiatric disorders. Reference: “A single neuron in C. elegans orchestrates multiple motor outputs through parallel modes of transmission” by Yung-Chi Huang, Jinyue Luo, Wenjia Huang, Casey M. Baker, Matthew A. Gomes, Bohan Meng, Alexandra B. Byrne and Steven W. Flavell, 27 September 2023, Current Biology. DOI: 10.1016/j.cub.2023.08.088 In addition to Huang and Flavell, the paper’s other authors are Jinyue Luo, Wenjia Huang, Casey Baker, Matthew Gomes, Bohan Meng, and Alexandra Byrne. The National Institutes of Health, the National Science Foundation, the McKnight Foundation, The Alfred P. Sloan Foundation, The Picower Institute, and The JPB Foundation contributed funding for the study.

After a 1988 algal bloom decimated snails in Sweden’s Koster archipelago, researchers reintroduced Crab snails and observed fast evolutionary adaptations. (Swedish L. saxatilis marine snails.) Credit: Daria Shipilina The Koster archipelago’s snail populations, affected by a toxic algae bloom, became the focus of a decades-long study revealing how rapid evolutionary changes can occur when driven by genetic diversity and environmental pressures. In 1988, the Koster archipelago, a cluster of islands off Sweden’s west coast near Norway, was struck by a particularly dense bloom of toxic algae, decimating the marine snail populations. One might wonder why the fate of snails on a tiny, three-square-meter rock in the open sea would matter. Yet, this event would create a unique opportunity to predict and witness evolution unfolding before our eyes. Previously, the islands and their small intertidal skerries—rocky islets—harbored dense and diverse populations of the marine snail species Littorina saxatilis. Although the snail populations on the larger islands—some of which were reduced to less than 1%—rebounded within two to four years, several skerries struggled to recover from the devastation. Crab-ecotype snails (1992) evolved to strikingly resemble the lost Wave-ecotype snails on a skerry. Credit: ISTA, images by Kerstin Johannesson A Groundbreaking Experiment Begins Marine ecologist Kerstin Johannesson from the University of Gothenburg, Sweden, saw a unique opportunity. In 1992, she re-introduced L. saxatilis snails to their lost skerry habitat—starting an experiment that would have far-reaching implications more than 30 years later. It allowed an international collaboration led by researchers from the Institute of Science and Technology Austria (ISTA), Nord University, Norway, the University of Gothenburg, Sweden, and The University of Sheffield, UK, to predict and witness evolution in the making. L. saxatilis is a common species of marine snails found throughout the North Atlantic shores, where different populations evolved traits adapted to their environments. These traits include size, shell shape, shell color, and behavior. The differences among these traits are particularly striking between the so-called Crab- and Wave-ecotype. These snails have evolved repeatedly in different locations, either in environments exposed to crab predation or on wave-exposed rocks away from crabs. Wave snails are typically small, and have a thin shell with specific colors and patterns, a large and rounded aperture, and bold behavior. Crab snails, on the other hand, are strikingly larger, have thicker shells without patterns, and a smaller and more elongated aperture. Crab snails also behave more warily in their predator-dominated environment. The Crab ecotype (left) is larger and wary of predators. The Wave ecotype (right) is smaller and has bold behavior. Credit: David Carmelet The Swedish Koster archipelago is home to these two different L. saxatilis snail types, often neighboring one another on the same island or only separated by a few hundred meters across the sea. Before the toxic algal bloom of 1988, Wave snails inhabited the skerries, while nearby shores were home to both Crab and Wave snails. This close spatial proximity would prove crucial. Crab-ecotype L. saxatilis snails were brought here in 1992 after toxic algae wiped out the original Wave-ecotype population. Credit: Kerstin Johannesson Rediscovering Evolutionary Traits Seeing that the Wave snail population of the skerries was entirely wiped out due to the toxic algae, Johannesson decided in 1992 to reintroduce snails to one of these skerries, but of the Crab-ecotype. With one to two generations each year, she rightfully expected the Crab snails to adapt to their new environment before scientists’ eyes. “Our colleagues saw evidence of the snails’ adaptation already within the first decade of the experiment,” says Diego Garcia Castillo, a graduate student in the Barton Group at ISTA and one of the authors leading the study. “Over the experiment’s 30 years, we were able to predict robustly what the snails will look like and which genetic regions will be implicated. The transformation was both rapid and dramatic,” he adds. The donor shore of the transplanted snail population (foreground) and the experimental skerry (little dot in the sea to the right). Credit: Kerstin Johannesson However, the snails did not evolve these traits entirely from scratch. Co-corresponding author Anja Marie Westram, a former postdoc at ISTA and currently a researcher at Nord University, explains, “Some of the genetic diversity was already available in the starting Crab population but at low prevalence. This is because the species had experienced similar conditions in the recent past. The snails’ access to a large gene pool drove this rapid evolution.” Johannesson is a marine ecologist at the University of Gothenburg, Sweden. Credit: Bo Johannesson Genetic Diversity and Evolutionary Change The team examined three aspects over the years of the experiment: the snails’ phenotype, individual gene variabilities, and larger genetic changes affecting entire regions of the chromosomes called “chromosomal inversions.” In the first few generations, the researchers witnessed an interesting phenomenon called “phenotypic plasticity”: Very soon after their transplantation, the snails modified their shape to adjust to their new environment. But the population also quickly started to change genetically. The researchers could predict the extent and direction of the genetic changes, especially for the chromosomal inversions. They showed that the snails’ rapid and dramatic transformation was possibly due to two complementary processes: A fast selection of traits already present at a low frequency in the transplanted Crab snail population and gene flow from neighboring Wave snails that could have simply rafted over 160 meters to reach the skerry. First author Diego Garcia Castillo, graduate student at ISTA, visiting the experimental skerry. Credit: Pierre Barry Evolution in the Face of Environmental Pressures In theory, scientists know that a species with high enough genetic variation can adapt more rapidly to change. However, few studies aimed to experiment with evolution over time in the wild. “This work allows us to have a closer look at repeated evolution and predict how a population could develop traits that have evolved separately in the past under similar conditions,” says Garcia Castillo. The team now wants to learn how species can adapt to modern environmental challenges such as pollution and climate change. “Not all species have access to large gene pools and evolving new traits from scratch is tediously slow. Adaptation is very complex and our planet is also facing complex changes with episodes of weather extremes, rapidly advancing climate change, pollution, and new parasites,” says Westram. She hopes this work will drive further research on maintaining species with large and diverse genetic makeups. “Perhaps this research helps convince people to protect a range of natural habitats so that species do not lose their genetic variation,” Westram concludes. Now, the snails Johannesson brought to the skerry in 1992 have reached a thriving population of around 1,000 individuals. Reference: “Predicting rapid adaptation in time from adaptation in space: A 30-year field experiment in marine snails” by Diego Garcia Castillo, Nick Barton, Rui Faria, Jenny Larsson, Sean Stankowski, Roger Butlin, Kerstin Johannesson and Anja M. Westram, 11 October 2024, Science Advances. DOI: 10.1126/sciadv.adp2102

Understanding the origin of a viral outbreak is crucial for scientists to gather insights into viral lineages and implement preventive measures against future outbreaks. The theory that the COVID-19 pandemic was triggered by the Sars-CoV-2 virus being leaked from the Wuhan Institute of Virology in China was recently given new life following an explosive article in the Wall Street Journal (WSJ) in which the authors claimed “the most compelling reason to favor the lab leak hypothesis is firmly based in science.” But does the science really support the claim that the virus was engineered in a laboratory? Understanding the origin of a viral outbreak can provide scientists with important information about viral lineages and allow steps to be put in place to avoid similar outbreaks in the future. As such, the origin of Sars-CoV-2 has been debated from the beginning of the pandemic and remains an active topic of discussion among scientists. It has long been known that viruses similar to the original Sars-CoV that causes Sars are found in bats. These viruses are well studied in China, where the 2002 Sars outbreak originated. But related viruses have been found globally. Unsurprisingly, coronaviruses are again involved in a pandemic, the third such event in the 21st century – first Sars, then Mers, now COVID-19. While a natural origin seems likely – and many have long warned about the danger of wildlife circulating viruses – scientists shouldn’t jump to conclusions. An important way scientists can determine the origin of a virus is by looking at its genome. In the WSJ article, the authors, Prof Richard Muller, an astrophysicist, and Dr Steven Quay, physician and chief executive of Atossa Therapeutics, claim Sars-CoV-2 has “genetic fingerprints” of a lab-origin virus. They say that the presence of a particular genetic sequence (CGG-CGG) is a sign that the virus originated in a lab. To understand the claims being made, we must first understand the genetic code. When a virus infects a cell, it hijacks the cellular machinery, providing instructions (genome) to produce more copies of itself. This genome comprises a long series of molecules called nucleotides, each of which is represented by the letters A, C, G or U. A group of three nucleotides (known as a codon) provides the instruction for a cell to make an amino acid, the most basic molecular building block of living things. Most amino acids are encoded by several different codons. CGG is one of six possible codons that instruct the cell to add the amino acid arginine. The authors of the WSJ article argue that Sars-CoV-2 originated in a lab based on the presence of a “CGG-CGG” sequence. They claim this is a “readily available and convenient” codon pair that scientists prefer to use to produce the amino acid arginine. But to anyone with an understanding of the techniques required for genetic modification, this double-CGG is usually no more difficult or easy to produce than any other pair of codons that encode arginines. No reason CGG-CGG had to be made in lab The authors claim that the CGG codon appears less frequently than the other five possible codons in betacoronaviruses (the family of coronaviruses to which Sars-CoV-2 belongs). If we look at related coronaviruses, the CGG codon encodes about 5% of all arginines in Sars-CoV compared with about 3% of all arginines in Sars-CoV-2. Though CGG is less common than other codons, the authors’ argument fails to provide a reason that the double-CGG sequence could not exist naturally. The authors argue that recombination (when viruses that infect the same host share genetic material) was the most likely way in which Sars-CoV-2 was able to obtain the double-CGG sequence. They note that the double-CGG codon pair is not found in other members of this “class” of coronavirus, so natural recombination could not possibly generate a double-CGG. However, viruses do not just depend on preassembled segments of genetic material to evolve and expand their host range. The authors also claim that mutation (random copying errors) is unlikely to generate the double-CGG sequence. But viruses evolve at a rapid rate, so much so that the accumulation of mutations is a common inconvenience of virological studies. Recombination is one way in which viruses evolve, but the authors’ dismissal of mutation as a source of viral change is an inaccurate description of reality. The final claim that the first sequenced Sars-CoV-2 virus was ideally suited to the human host neglects evidence of viral circulation in local animal populations, animal-to-animal transmission, and the rapid evolution that is driving the increasing transmissibility of the newer variants. If the virus was ideally adapted to humans, why is so much further evolution evident? Disappointingly, many other media articles appear to have accepted and repeated the claims from the WSJ piece. The origin of Sars-CoV-2 may remain unresolved, but there is no evidence presented in the WSJ piece that scientifically supports the concept of a lab leak of a genetically engineered virus. Written by Keith Grehan – Postdoctoral Researcher, Molecular Biology, University of Leeds Natalie Kingston – Research Fellow, Virology, University of Leeds Adapted from an article originally published on The Conversation.

DVDV1551RTWW78V



Pillow ODM design company in Indonesia 》committed to ESG, comfort, and your brand is successThailand neck support pillow OEM 》committed to ESG, comfort, and your brand is successOrthopedic pillow OEM development factory Taiwan 》built to serve both niche and mass production needs

限會員,要發表迴響,請先登入