Contents ...
udn網路城邦
Latex pillow OEM production in Taiwan 》meeting you
2025/05/01 18:17
瀏覽14
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Innovative pillow ODM solution in Vietnam

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Graphene insole OEM factory Indonesia

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Indonesia insole ODM design and production

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Custom foam pillow OEM in Taiwan

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Graphene insole manufacturer in China

Five early Silurian fishes from China rewrite the evolutionary story of “from fish to human.” Credit: IVPP The Discovery of a Fossil “Treasure Hoard” Illuminates the Rise of Fishes Researchers from the Chinese Academy of Sciences‘ Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) have recently found two fossil repositories in the early Silurian strata of southwest Guizhou and Chongqing that are rewriting the “from fish to human” evolutionary story. Four different papers describing their findings were recently published in the journal Nature.  Humans are one of the 99.8% of species of extant vertebrates that are gnathostomes, or jawed vertebrates. The basic body plan and several key organs of humans can be traced back to the origin of gnathostomes. One of the most significant developments in the evolution of vertebrates is the emergence of jaws. The Chongqing fish fossil depository is the world’s only early Silurian Lagerstätte which preserves complete, head-to-tail jawed fishes, providing a peerless chance to peek into the proliferating “dawn of fishes.” Credit: NICE Tech/ScienceApe However, how this innovation occurred remains a mystery, owing to the fact that fossils of early jawed vertebrates were not discovered in large numbers until the beginning of the Devonian (419 million years ago), despite molecular data indicating that the origin of jawed vertebrates should have occurred earlier than 450 million years ago. As a result, there is a significant gap in the fossil record of early jawed vertebrates, lasting at least 30 million years from the Late Ordovician to the Silurian. Silurian Fish Graphic. Credit: NICE Tech/ScienceApe The latest findings of Zhu Min’s team from IVPP are unearthed from two new fossil depositories, shedding light on the rise of jawed vertebrates: These jawed fishes were already thriving in the waters of the South China block, at least 440 million years ago, and by late Silurian, more diverse and larger jawed fishes had evolved and began to spread around the world, opening the saga of fish landing and our humans eventually evolved. Discoveries of fish fossils from the two depositories help to trace many human body structures back to ancient fishes, some 440 million years ago and fill some key gaps in the evolution of “from fish to human,” and provide further iron evidence to the evolutionary path. The Chongqing fish fossil depository in the Upper Red Beds of the Silurian system dates back to 436 million years ago. It is the world’s only early Silurian Lagerstätte (fossil depository with exceptional preservation) which preserves complete, head-to-tail jawed fishes, providing a peerless chance to peek into the proliferating “dawn of fishes”. This fossil “treasure hoard” stands among other great Chinese Lagerstätten: Chengjiang Biota and the Jehol Biota, all provide key jigsaw puzzles previously missing in the tree of life. References: “The oldest gnathostome teeth” by Plamen S. Andreev, Ivan J. Sansom, Qiang Li, Wenjin Zhao, Jianhua Wang, Chun-Chieh Wang, Lijian Peng, Liantao Jia, Tuo Qiao and Min Zhu, 28 September 2022, Nature. DOI: 10.1038/s41586-022-05166-2 “Galeaspid anatomy and the origin of vertebrate paired appendages” by Zhikun Gai, Qiang Li, Humberto G. Ferrón, Joseph N. Keating, Junqing Wang, Philip C. J. Donoghue and Min Zhu, 28 September 2022, Nature. DOI: 10.1038/s41586-022-04897-6 “Spiny chondrichthyan from the lower Silurian of South China” by Plamen S. Andreev, Ivan J. Sansom, Qiang Li, Wenjin Zhao, Jianhua Wang, Chun-Chieh Wang, Lijian Peng, Liantao Jia, Tuo Qiao and Min Zhu, 28 September 2022, Nature. DOI: 10.1038/s41586-022-05233-8 “The oldest complete jawed vertebrates from the early Silurian of China” by You-an Zhu, Qiang Li, Jing Lu, Yang Chen, Jianhua Wang, Zhikun Gai, Wenjin Zhao, Guangbiao Wei, Yilun Yu, Per E. Ahlberg and Min Zhu, 28 September 2022, Nature. DOI: 10.1038/s41586-022-05136-8 The study was funded by the Chinese Academy of Sciences.

In a groundbreaking study, researchers have identified the right inferior frontal gyrus (rIFG) as crucial in the brain’s inhibitory control circuit. Using dynamic causal modeling and fMRI with 250 participants, the study found high connectivity in this circuit, influenced by gender and performance. The findings reveal hemispheric asymmetry and gender-based differences in brain processes, providing insights that could improve treatment strategies for mental and neurological disorders related to response inhibition. Researchers discover the critical role of the right inferior frontal gyrus in brain’s inhibitory control, highlighting gender differences and implications for treating related disorders. Published in the 2023 Volume 3 issue of Psychoradiology a team of dedicated researchers from The University of Hong Kong and The University of Electronic Science and Technology of China has conclusively identified the right inferior frontal gyrus (rIFG) as a key input and causal regulator within the subcortical response inhibition nodes. This right-lateralized inhibitory control circuit, characterized by its significant intrinsic connectivity, highlights the crucial role of the rIFG in orchestrating top-down cortical-subcortical control, underscoring the intricate dynamics of brain function in response inhibition. Advanced Research Methods and Results In this comprehensive study, researchers employed dynamic causal modeling (DCM-PEB) and functional magnetic resonance imaging (fMRI) with a substantial sample size (n = 250) to explore inhibitory circuits in the brain, particularly focusing on the right inferior frontal gyrus (rIFG), caudate nucleus (rCau), globus pallidum (rGP), and thalamus (rThal). This approach treated the brain as a nonlinear dynamical system, enabling the estimation of directed causal influences among these nodes, influenced by task demands and biological variables. Brain activation maps for general response inhibition on whole brain level (contrast: NoGo > Go; P < 0.05 FWE, peak level). L, left; R, right. The color bar represents the t-values of the BOLD signal and reflect the significance level of the contrast. Credit: Psychoradiology Findings revealed high intrinsic connectivity within this neural circuit, with response inhibition notably enhancing causal projections from the rIFG to both rCau and rThal, particularly amplifying the regulatory role of the rIFG during such tasks. The study also uncovered that sex and performance metrics significantly affect the circuit’s functional architecture; for instance, women exhibited increased self-inhibition in the rThal and reduced modulation to the GP, while better inhibitory performance was linked to more robust communication from the rThal to the rIFG. Gender Differences and Hemispheric Asymmetry Interestingly, these communication patterns were not mirrored in a left-lateralized model, highlighting a hemispheric asymmetry. The research indicates that different brain processes might mediate similar behavioral performances in response inhibition across genders, particularly in thalamic loops, with higher response inhibition accuracy associated with stronger information flow from the rThal to the rIFG. (a) Location of regions included in the right model. The A matrix: intrinsic connectivity across all experimental conditions (b, f). The B matrix: modulatory effect on effective connectivity between regions and self-inhibitions from NoGo (c, g) and Go condition (d, h). The C matrix: Driving inputs in ROI in the NoGo and Go condition (e, i). Values in matrices reflect the connectivity parameters. Credit: Psychoradiology Implications and Future Directions These insights into the brain’s inhibitory control mechanisms have significant implications for understanding a range of mental and neurological disorders characterized by response inhibition deficits. The study’s findings could guide the development of targeted neuromodulation strategies and personalized interventions to address these deficits, enhancing the treatment and management of such conditions. Reference: “The right inferior frontal gyrus as pivotal node and effective regulator of the basal ganglia-thalamocortical response inhibition circuit” by Qian Zhuang, Lei Qiao, Lei Xu, Shuxia Yao, Shuaiyu Chen, Xiaoxiao Zheng, Jialin Li, Meina Fu, Keshuang Li, Deniz Vatansever, Stefania Ferraro, Keith M Kendrick and Benjamin Becker, 13 October 2023, Psychoradiology. DOI: 10.1093/psyrad/kkad016

European antlion (Euroleon nostras) on its dorsal side playing dead. Credit: Professor Nigel R. Franks, University of Bristol Many animals feign death to try to escape their predators, with some individuals in prey species remaining motionless, if in danger, for extended lengths of time. Charles Darwin recorded a beetle that remained stationary for 23 minutes – however the University of Bristol has documented an individual antlion larvae pretending to be dead for an astonishing 61 minutes. Of equal importance, the amount of time that an individual remains motionless is not only long but unpredictable. This means that a predator will be unable to predict when a potential prey item will move again, attract attention, and become a meal. Predators are hungry and cannot wait indefinitely. Similarly, prey may be losing opportunities to get on with their lives if they remain motionless for too long. Thus, death-feigning might best be thought of as part of a deadly game of hide and seek in which prey might gain most by feigning death if alternative victims are readily available. The study, published on March 3, 2021, in the science journal Biology Letters, involved evaluating the benefits of death-feigning in terms of a predator visiting small populations of conspicuous prey. Researchers used computer simulations that utilize the marginal value theorem, a classical model in optimization. Lead author of the paper Professor Nigel R. Franks from the University of Bristol’s School of Biological Sciences, said: “Imagine you are in a garden full of identical soft fruit bushes. You go to the first bush. Initially collecting and consuming fruit is fast and easy, but as you strip the bush finding more fruit gets harder and harder and more time-consuming. “At some stage, you should decide to go to another bush and begin again. You are greedy and you want to eat as many fruits as quickly as possible. The marginal value theorem would tell you how long to spend at each bush given that time will also be lost moving to the next bush. The Art of Wasting Time “We use this approach to consider a small bird visiting patches of conspicuous antlion pits and show that antlion larvae that waste some of the predator’s time, by ‘playing dead’ if they are dropped, change the game significantly. In a sense, they encourage the predator to search elsewhere.” The modeling suggests that antlion larvae would not gain significantly if they remained motionless for even longer than they actually do. This suggests that in this arms race between predators and prey, death-feigning has been prolonged to such an extent that it can hardly be bettered. Professor Franks added: “Thus, playing dead is rather like a conjuring trick. Magicians distract an audience from seeing their sleights of hand by encouraging them to look elsewhere. Just so with the antlion larvae playing dead – the predator looks elsewhere. Playing dead seems to be a very good way to stay alive.” Reference: “Hide-and-seek strategies and post-contact immobility’ by Nigel R. Franks, Alan Worley and Ana B. Sendova-Franks, 3 March 2021, Biology Letters. DOI: 10.1098/rsbl.2020.0892

DVDV1551RTWW78V



Indonesia OEM insole and pillow supplier 》elevating your brand with precision engineering and flexible productionTaiwan anti-bacterial pillow ODM design 》functional, flexible, and built for scaleChina custom product OEM/ODM services 》your competitive edge in product performance and speed

限會員,要發表迴響,請先登入