Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Taiwan OEM insole and pillow supplier
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Taiwan pillow ODM development service
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Ergonomic insole ODM support Taiwan
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Thailand OEM/ODM hybrid insole services
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Soft-touch pillow OEM service in Thailand
The Kimberella fossil. Credit: Dr Ilya Bobrovskiy/GFZ-Potsdam Ediacaran fossils reveal dietary habits and evolutionary insights, showing Kimberella had a gut to digest algae while Dickinsonia absorbed nutrients through its body. Scientists from The Australian National University (ANU) have uncovered new insights into the physiology of our earliest animal ancestors by studying the contents of the last meal consumed by the Ediacara biota, the world’s oldest large organisms dating back 575 million years. The research, published in the journal Current Biology, revealed that these ancient animals ate bacteria and algae sourced from the ocean floor, providing a deeper understanding of their ability to consume and digest food. The scientists analyzed ancient fossils containing preserved phytosterol molecules — natural chemical products found in plants — that remained from the animals’ last meal. By examining the molecular remains of what the animals ate, the researchers were able to confirm the slug-like organism, known as Kimberella, had a mouth and a gut and digested food the same way modern animals do. The researchers say it was likely one of the most advanced creatures of the Ediacarans. Dickinsonia: A Simpler Feeding Mechanism The ANU team found that another animal, which grew up to 1.4 meters in length and had a rib-like design imprinted on its body, was less complex and had no eyes, mouth, or gut. Instead, the odd creature, called Dickinsonia, absorbed food through its body as it traversed the ocean floor. “Our findings suggest that the animals of the Ediacara biota, which lived on Earth prior to the ‘Cambrian Explosion’ of modern animal life, were a mixed bag of outright weirdos, such as Dickinsonia, and more advanced animals like Kimberella that already had some physiological properties similar to humans and other present-day animals,” lead author Dr. Ilya Bobrovskiy, from GFZ-Potsdam in Germany, said. Both Kimberella and Dickinsonia, which have a structure and symmetry unlike anything that exists today, are part of the Ediacara biota family that lived on Earth about 20 million years prior to the Cambrian Explosion – a major event that forever changed the course of evolution of all life on Earth. “Ediacara biota really are the oldest fossils large enough to be visible with your naked eyes, and they are the origin of us and all animals that exist today. These creatures are our deepest visible roots,” Dr. Bobrovskiy, who completed the work as part of his Ph.D. at ANU, said. The Role of Energy-Rich Algae in Evolution Study co-author Professor Jochen Brocks, from the ANU Research School of Earth Sciences, said algae are rich in energy and nutrients and may have been instrumental for Kimberella’s growth. “The energy-rich food may explain why the organisms of the Ediacara biota were so large. Nearly all fossils that came before the Ediacara biota were single-celled and microscopic in size,” Professor Brocks said. Using advanced chemical analysis techniques, the ANU scientists were able to extract and analyze the sterol molecules contained in the fossil tissue. Cholesterol is the hallmark of animals and it’s how, back in 2018, the ANU team was able to confirm that Ediacara biota are among our earliest known ancestors. The molecules contained tell-tale signatures that helped the researchers decipher what the animals ate in the lead-up to their death. Professor Brocks said the difficult part was differentiating between the signatures of the fat molecules of the creatures themselves, the algal and bacterial remains in their guts, and the decaying algal molecules from the ocean floor that were all entombed together in the fossils. “Scientists already knew Kimberella left feeding marks by scraping off algae covering the sea floor, which suggested the animal had a gut. But it was only after analyzing the molecules of Kimberella’s gut that we were able to determine what exactly it was eating and how it digested food,” Professor Brocks said. “Kimberella knew exactly which sterols were good for it and had an advanced fine-tuned gut to filter out all the rest. “This was a Eureka moment for us; by using the preserved chemicals in the fossils, we can now make gut contents of animals visible even if the gut has since long decayed. We then used this same technique on weirder fossils like Dickinsonia to figure out how it was feeding and discovered that Dickinsonia did not have a gut.” Dr. Bobrovskiy retrieved both the Kimberella and Dickinsonia fossils from steep cliffs near the White Sea in Russia — a remote part of the world home to bears and mosquitoes — in 2018. Reference: “Guts, gut contents, and feeding strategies of Ediacaran animals” by Ilya Bobrovskiy, Alexey Nagovitsyn, Janet M. Hope, Ekaterina Luzhnaya and Jochen J. Brocks, 22 November 2022, Current Biology. DOI: 10.1016/j.cub.2022.10.051
Immunofluorescence image of a polycystic kidney disease organoid. Credit: NTU Singapore NTU Singapore’s groundbreaking study on ‘mini kidneys’ offers new hope for treating polycystic kidney disease, with minoxidil emerging as a promising therapy. Scientists at Nanyang Technological University, Singapore (NTU Singapore) have successfully grown ‘mini kidneys’ in the lab and grafted them into live mice, revealing new insights into the metabolic defects and a potential therapy for polycystic kidney disease. ‘Mini kidneys,’ or kidney organoids, are kidney-like structures grown in the lab using stem cells. In the study led by NTU’s Lee Kong Chian School of Medicine (LKCMedicine), researchers grew the organoids using skin cells derived from patients with polycystic kidney disease (PKD), a prevalent form of genetic condition that affects 1 in 1000 individuals across all ethnicities.[1] People with PKD often progress to end-stage kidney disease between their 50s and 60s, with the standard treatment options available being dialysis or a kidney transplant. However, dialysis significantly compromises a patient’s quality of life, while a transplanted kidney can be challenging to acquire. One other option is the Food and Drug Administration (FDA) approved drug Tolvaptan, which is very costly and has severe side effects on the liver. Image of microscopic cystic kidney organoids derived from patient induced pluripotent stem cells. Credit: NTU Singapore To address the need for more effective treatment for PKD patients, the NTU research team sought to better understand the disease by engrafting their newly developed mini kidneys into mice. Previous studies were conducted on mini kidneys grown in a dish, which could only partly mimic the kidney structure and function. The NTU scientists engrafted the mini kidneys into live mice to comprehensively replicate the pathological features of kidney disease, including blood flow, fluid movement (tubular fluid) and cellular communication with other organs. Lead investigator Assistant Professor Xia Yun at LKCMedicine said, “Engrafting the kidney organoid in mice provided us with a physiologically sophisticated approach to studying polycystic kidney disease as we were able to successfully emulate critical disease characteristics similar to those observed in human kidney patients.” Critical disease characteristics included abnormalities like the spontaneous formation of cysts in the kidneys and the subsequent damage to its tiny tubes. Members of the LKCMedicine research team include (standing, L-R): Research associate Liu Meng, Research fellow Dr Zhang Chao, (seated, L-R) Assistant Professor Foo Jia Nee and Assistant Professor Xia Yun. Credit: NTU Singapore Innovations in PKD Treatment Research In their study, reported in the scientific journal Cell Stem Cell, the NTU research team said that they believed their engrafted mini kidneys were high quality because cysts sustained without extra stress stimulation or chemicals, even after they were removed from the live mice for further investigations in a dish. In contrast, previous kidney organoids grown in a dish cannot form cysts without stress stimulation. Co-investigator Assistant Professor Foo Jia Nee at LKCMedicine said, “The similarity between the disease manifestation observed in our engrafted mini kidney model and the real-life experiences of polycystic kidney disease patients suggest that growing kidney organoids and engrafting them into live mice could be beneficial in studying the disease and a useful tool to test new treatments.” Metabolic Defects in Polycystic Kidney Disease Scientists have long known that abnormalities in a structure on kidney cells, or the primary cilium, cause cysts to form in kidneys. However, tests to understand the regulatory mechanism and relationship between the primary cilium and cell metabolism (autophagy) in live mice with PKD, have not been possible until now. By studying the development of PKD in live mice and testing cellular pathways, researchers found evidence that boosting autophagy could reduce the severity of cysts in the mini kidney. After establishing that boosting autophagy could reduce cysts, the NTU scientists shortlisted 22 drugs known for their effects on cell metabolism and tested them in the lab. Results showed that minoxidil, a clinical drug widely used to cure hypertension and hair loss, effectively reduced cyst formation in the novel mouse model. Future Implications and Studies Asst Prof Xia Yun said, “Our study has demonstrated how cysts in polycystic diseased kidneys can be reduced by boosting autophagy, suggesting that this could be a promising treatment for PKD. Moreover, the proven clinical safety of minoxidil may allow it to be quickly re-purposed to treat PKD patients in clinic. However, more research will be needed to establish this potential.” Commenting as an independent expert, Associate Professor Ng Kar Hui, Senior Consultant, Division of Paediatric Nephrology, Dialysis and Renal Transplantation, Department of Paediatrics, Khoo Teck Puat – National University Children’s Medical Institute, National University Hospital, said, “Polycystic kidney disease is one of the biggest causes of chronic kidney diseases among adults. An effective treatment may potentially ameliorate the rising numbers of people with kidney failure in Singapore. The establishment of such models in live organisms brings us one step closer to finding more treatment options. In future studies, the NTU team will test the efficacy of minoxidil and adapt the mini kidney models to investigate other burgeoning kidney diseases without a strong genetic underpinning, such as diabetic kidney disease. Notes Harris, P.C., and Torres, V.E. (2009). Polycystic kidney disease. Annual Review of Medicine. Volume 60, 321–337. Reference: “Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo” by Meng Liu, Chao Zhang, Ximing Gong, Tian Zhang, Michelle Mulan Lian, Elaine Guo Yan Chew, Angelysia Cardilla, Keiichiro Suzuki, Huamin Wang, Yuan Yuan, Yan Li, Mihir Yogesh Naik, Yixuan Wang, Bingrui Zhou, Wei Ze Soon, Emi Aizawa, Pin Li, Jian Hui Low, Moses Tandiono, Enrique Montagud, Daniel Moya–Rull, Concepcion Rodriguez Esteban, Yosu Luque, Mingliang Fang, Chiea Chuen Khor, Nuria Montserrat, Josep M. Campistol, Juan Carlos Izpisua Belmonte, Jia Nee Foo and Yun Xia, 4 January 2024, Cell Stem Cell. DOI: 10.1016/j.stem.2023.12.003
The upper panel shows non-Rabl configuration. Centromeres in magenta dispersed in nuclei in green. The lower panel shows Rabl configuration. Centromeres unevenly distributed in nuclei. Credit: Sachihiro Matsunaga, The University of Tokyo Biologists Uncover Mechanism That Shapes Centromere Distribution Since the 1800s, scientists have noted the configuration of centromeres, a special chromosomal region that is vital for cell division, in the cell nucleus. However, up until now, the determining mechanisms and the biological significance of centromere distribution were poorly understood. Recently, researchers proposed a two-step regulatory mechanism that shapes centromere distribution. Their findings also indicate that centromere configuration in the nucleus plays a role in maintaining genome integrity. The results were published today (August 1, 2022) in the journal Nature Plants. The study was led by researchers from the University of Tokyo and their collaborators. Special chromosomal domains known as centromeres are pulled to the opposite ends of the cell during the process of cell division. After cell division is complete and the cell nucleus is constructed, centromeres are spatially distributed in the nucleus. If the distribution of centromeres pulled to the two poles remains unchanged, the cell nucleus will have centromeres grouped at just one side of the nucleus. This uneven distribution of centromeres is called Rabl configuration, after Carl Rabl, the 19th-century cytologist. Some species’ nuclei show a dispersed distribution of centromeres instead. This is known as non-Rabl configuration. “The biological function and molecular mechanism of the Rabl or non-Rabl configuration has been a mystery across the centuries,” said corresponding author Sachihiro Matsunaga, professor at the University of Tokyo’s Graduate School of Frontier Sciences. “We successfully revealed the molecular mechanism to construct the non-Rabl configuration.” The uneven distribution of centromeres (magenta) in nuclei (green). Credit: Sachihiro Matsunaga, The University of Tokyo The scientists studied the plant Arabidopsis thaliana, known also as thale cress and a specimen that is known to have non-Rabl configuration, and its mutant form that had a Rabl configuration. Through their work, they found that protein complexes known as condensin II (CII) and protein complexes known as the linker of nucleoskeleton and cotoskeleton (LINC) complex work together to determine centromere distribution during cell division. “The centromere distribution for non-Rabl configuration is regulated independently by the CII– LINC complex and a nuclear lamina protein known as CROWDED NUCLEI (CRWN),” Matsunaga said. Two-Step Regulatory Mechanism of Centromere Scattering The first step of the two-step regulatory mechanism of centromere distribution that the researchers uncovered was that the CII-LINC complex mediates the scattering of centromeres from late anaphase to telophase — two phases at the end of cell division. The second step of the process is that the CRWNs stabilize the scattered centromeres on nuclear lamina within the nucleus. Next, to explore the biological significance, the researchers analyzed the gene expression in A. thaliana and in its Rabl-structure mutant. Because a change in the spatial arrangement of centromeres also changes the spatial arrangement of genes, the researchers expected to find differences in gene expression, but this hypothesis proved to be incorrect. However, when DNA damage stress was applied, the mutant grew organs at a slower rate than the normal plant. “This suggests that precise control of centromere spatial arrangement is required for organ growth in response to DNA damage stress, and there is no difference in tolerance to DNA damage stress between organisms with the non-Rabl and Rabl,” Matsunaga said. “This suggests that the appropriate spatial arrangement of DNA in the nucleus regardless of Rabl configuration is important for stress response.” According to Matsunaga, the next steps are to identify the power source that changes the spatial arrangement of specific DNA regions and the mechanism that recognizes specific DNA. “Such findings will lead to the development of technology for artificially arranging DNA in the cell nucleus in an appropriate spatial arrangement,” he said. “It is expected that this technology will make it possible to create stress-resistant organisms, as well as to impart new properties and functions by altering the spatial arrangement of DNA rather than editing its nucleotide sequence.” Reference: “Two-step regulation of centromere distribution by condensin II and the nuclear envelope proteins” by Takuya Sakamoto, Yuki Sakamoto, Stefan Grob, Daniel Slane, Tomoe Yamashita, Nanami Ito, Yuka Oko, Tomoya Sugiyama, Takumi Higaki, Seiichiro Hasezawa, Maho Tanaka, Akihiro Matsui, Motoaki Seki, Takamasa Suzuki, Ueli Grossniklaus and Sachihiro Matsunaga, 1 August 2022, Nature Plants. DOI: 10.1038/s41477-022-01200-3
DVDV1551RTWW78V
Taiwan insole ODM for global brands 》proven by years of experience in OEM/ODM for wellness productsFlexible manufacturing OEM & ODM Thailand 》minimizing lead time, maximizing product valueMemory foam pillow OEM factory Taiwan 》helping your brand lead with innovation and integrity
下一則: China graphene product OEM service 》a manufacturin
限會員,要發表迴響,請先登入

