Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Graphene sheet OEM supplier Vietnam
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.High-performance graphene insole OEM Vietnam
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.China pillow ODM development service
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.ODM pillow factory for sleep product brands
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Vietnam insole ODM for global brands
Researchers have linked increased numbers of mutations in children to a higher rate of random mutations in sperm cells of the biological father, associated with chemotherapy or rare genetic defects in DNA repair. Scientists have traced the cause of increased numbers of mutations in children to a higher rate of random mutations in sperm cells of the biological father, associated with rare genetic defects in DNA repair or chemotherapy. New research has found that some rare cases of higher genetic mutation rates in children, known as hypermutation, could be linked to the father receiving certain chemotherapy treatments. Researchers from the Wellcome Sanger Institute and their collaborators analyzed over 20,000 families’ genetic information and identified 12 children with between two to seven times more mutations than the general population. The team linked the majority of these to increased mutations in the sperm of the biological father. The research, published today (May 11, 2022) in the journal Nature, shows that just under half of these fathers had been treated with certain types of chemotherapy earlier in life, which could be linked to the increased number of mutations in their sperm cells. While these cases of hypermutation in children are rare, and in the vast majority of children will not lead to genetic disorders, hypermutation will increase the risk of a child having a rare genetic disorder. It is important to investigate this further due to the implications it has for patients who receive chemotherapy and want to have children in the future. If further research confirms the impact of chemotherapy, patients could be offered the opportunity to freeze their sperm before treatment. Genetic Transmission of Mutations Genomes are copied with a very low error rate when they are passed from one generation to the next. Nevertheless, as the human genome contains three billion letters, random mutations in the sperm and the egg are inevitable and pass from the parent to the child. This means that typically every child has around 60 to 70 new mutations that their biological parents don’t have. These mutations are responsible for genetic variation along with many genetic diseases. Around 75 percent of these random mutations come from the father.[1] Most genetic disorders only occur when both copies of an important gene are damaged, resulting in what is known as a recessive disease. If only one copy is damaged, for example, by a new mutation, the remaining functioning copy of the gene will be able to prevent disease. However, a minority of genetic disorders, known as dominant disorders, occur when only one copy of a gene is damaged. It is these dominant disorders that can be caused by a single, random mutation. One of the main factors influencing mutation rate is the age of the parents, with mutations increasing by 1.3 mutations per year in the fathers and 0.4 mutations per year in mothers.[2] If there is a higher number of germline mutations, there is a higher risk of a child being born with a dominant disorder. However, hypermutation in children does not always mean they will have a dominant disorder. In new research, from the Wellcome Sanger Institute and collaborators, scientists used genetic data and family health histories from existing databases to identify children that had unusually high mutation rates, between two and seven times higher than average, to investigate where these might have originated from. The team analyzed data from over 20,000 UK families with children with suspected genetic conditions participating in the Deciphering Developmental Disorders and 100,000 Genomes projects. They found that children with hypermutation were rare among these families. As the number of children with hypermutations was only 12 out of around 20,000, these rates of increased mutations could not have been caused by common exposures, such as smoking, pollution, or common genetic variation. Chemotherapy’s Impact on Sperm Cells For eight of these children the excess mutations could be linked to their father’s sperm. It was possible to investigate in detail seven of the families, where the excess mutations came from the biological father. Two of the fathers had rare recessive genetic variants that impaired DNA repair mechanisms. The other five men had all previously been treated with chemotherapy before conceiving a child. Three of these children had a pattern of mutations characteristic of chemotherapy using platinum-based drugs and the fathers of the other two children had both received chemotherapy with mustard-derived alkylating agents. However, by linking the genetic data to anonymized health data, it could be shown that most fathers and all mothers who had received chemotherapy prior to conceiving a child did not have children with a notable excess of mutations. This study exemplifies the value of linking nationwide genetic data and routine clinical records in secure, anonymized, and trustworthy ways to provide unique insights into unanticipated, but important, questions. Through the efforts of Health Data Research UK and its partners, these kinds of responsible analyses of potential clinical relevance will be easier to perform in the future. While chemotherapy is one of the most effective treatments for cancer, it is widely recognized that it can have disruptive and debilitating side effects. Clinicians take these into account when prescribing this treatment. Future Research Directions and Family Planning Implications If these types of chemotherapy were shown to impact sperm in some patients, this could have clinical implications on treatment plans and family planning. Further research is required to investigate this at a deeper level before changing treatment for cancer in men. It is currently unclear why these types of chemotherapies seem to impact the sperm more than the egg cells. Dr. Joanna Kaplanis, first author and Post-Doctoral Fellow at the Wellcome Sanger Institute, said: “Hypermutation in children, where they have between two and seven times more random mutations than the general population, is rare and therefore cannot be caused by common carcinogens or exposures. Our research analyses over 20,000 families and highlights new causes of these mutations, linking them back to germline mutations in the father’s sperm as well as identifying a new mutational signature. Understanding the impact of these germline mutations in the sperm could help us uncover why some people are more likely to have children with these high rates of random mutations, and help protect against these if they cause disease.” John Danesh, Director of HDR UK Cambridge, who supported the research, said, “Hypermutation in children is an uncommon but important phenomenon that increases the risk of life-altering genetic diseases. By bringing together genetic data at scale, and linking this with routine clinical data like the hospital records of parents, the team has identified new risk factors that may influence future healthcare decisions. This work elegantly demonstrates how work in Health Data Research UK’s Understanding the Causes of Disease Programme is helping to link nationwide genetic data and clinical records in secure, anonymized, and trustworthy ways that provide unique insights into unanticipated, but important questions.” Sir Mark Caulfield, from Queen Mary University of London, and former Chief Scientist at Genomics England, said: “These findings were only possible due to access to whole genomes and linked health record data on the family members from the 100,000 Genomes Project. These findings could really help people with cancer consider family planning.” Professor Matthew Hurles, senior author and Head of Human Genetics at the Wellcome Sanger Institute, said: “Chemotherapy is an incredibly effective treatment for many cancers, but unfortunately it can have some damaging side effects. Our research found a plausible link between two types of chemotherapy and their impact on sperm in a very small number of men. These results require further systematic studies to see if there is a causal link between chemotherapy and sperm mutations, and if there is a way of identifying individuals at risk prior to treatment so they could take family planning measures, such as freezing their sperm prior to treatment. I would also like to thank the families that donated their genetic and health information to make this research possible.” Reference: “Genetic and chemotherapeutic influences on germline hypermutation” by Joanna Kaplanis, Benjamin Ide, Rashesh Sanghvi, Matthew Neville, Petr Danecek, Tim Coorens, Elena Prigmore, Patrick Short, Giuseppe Gallone, Jeremy McRae, Genomics England Research Consortium, Jenny Carmichael, Angela Barnicoat, Helen Firth, Patrick O’Brien, Raheleh Rahbari and Matthew Hurles, 11 May 2022, Nature. DOI: 10.1038/s41586-022-04712-2 Notes “Properties and rates of germline mutations in humans” by Catarina D. Campbell and Evan E. Eichler, 17 May 2013, Trends In Genetics. DOI: 10.1016/j.tig.2013.04.005 “Prevalence and architecture of de novo mutations in developmental disorders” by Deciphering Developmental Disorders Study, 25 January 2017, Nature. DOI: 10.1038/nature21062
A herring gull chick and eggs. Credit: Prof Jon Blount Chemical additives used in plastic production have been found in herring gull eggs, new research shows. Phthalates are a group of chemicals added to plastics to keep them flexible. The study, by the universities of Exeter and Queensland, looked for evidence of phthalates in newly laid herring gull eggs — and found up to six types of phthalate per egg. Phthalates function as pro-oxidants — potentially causing “oxidative stress” that can damage cells. “Herring gull mothers pass on vital nutrients to their offspring via their eggs,” said Professor Jon Blount, of the Centre for Ecology and Conservation at the University of Exeter’s Penryn Campus in Cornwall. “This includes lipids that nourish developing embryos, and vitamin E, which helps to protect chicks from oxidative stress that can occur during development and at hatching. “Unfortunately, our findings suggest that mothers are inadvertently passing on phthalates and products of lipid damage — and eggs with higher phthalate contamination also contained greater amounts of lipid damage and less vitamin E.” The impact of this on developing chicks is unknown, and further investigation is needed. Researchers collected 13 herring gulls eggs from sites in Cornwall, UK, and all 13 were found to contain phthalates. Phthalates — which are used in most plastic products and readily leech out — are now found in almost every environment on Earth. They can “bio-accumulate” (build up in living organisms) by becoming concentrated in fatty tissues. The study does not show where the gulls acquired the phthalates, but phthalates have previously been found in species preyed on by herring gulls, and the birds are known to swallow plastic. “Research on the impact of plastic on animals has largely focussed on entanglement and ingestion of plastic fragments,” Professor Blount said. “Far less is known about the impacts of plastic additives on the body. “By testing eggs, our study gives us a snapshot of the mother’s health — and it appears phthalate contamination could be associated with increased oxidative stress, and mothers transfer this cost to their offspring via the egg. “More research is now needed to discover how developing offspring are affected by being exposed to phthalates before they have even emerged as a hatchling.” He added: “We need to look more deeply into the pervasive threats of plastics — not just the breakdown of plastic items themselves, but also the dispersal of the multiple chemicals they contain. “Where do these end up, and what effects are they having on wildlife and ecosystems?” Reference: “Phthalate diversity in eggs and associations with oxidative stress in the European herring gull (Larus argentatus)” by Simon F. Allen, Francesca Ellis, Christopher Mitchell, Xianyu Wang, Neeltje J. Boogert, Chun-Yin Lin, Joseph Clokey, Kevin V. Thomas and Jonathan D. Blount, 17 June 2021, Marine Pollution Bulletin. DOI: 10.1016/j.marpolbul.2021.112564 The study received an initiator grant from QUEX, a partnership between the universities of Exeter and Queensland.
Migratory bats pick up crucial environmental signals for long-distance navigation through the cornea of their eyes. Mammals see with their eyes, hear with their ears, and smell with their nose. But which sense or organ allows them to orient themselves on their migrations, which sometimes go far beyond their local foraging areas and therefore require an extended ability to navigate? Scientific experiments led by the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW), published together with Prof. Richard A. Holland (Bangor University, UK) and Dr. Gunārs Pētersons (Latvia University of Life Sciences and Technologies) now show that the cornea of the eyes is the location of such an important sense in migrating bats. If the cornea is anesthetized, the otherwise reliable sense of orientation is disturbed while light detection remains unimpaired. The experiment suggests the localization of a magnetic sense in mammals. The paper is published in the scientific journal Communications Biology. A research team led by Dr. Oliver Lindecke and PD Dr. Christian Voigt from Leibniz-IZW demonstrated for the first time that environmental signals that are important for navigating over long distances are picked up via the cornea of the eyes. They conducted experiments with Nathusius’ bats (Pipistrellus nathusii) during the late summer migration period. In bats of one test group, the scientists locally anesthetized the cornea with a drop of oxybuprocaine. This surface anesthetic is widely used in ophthalmology, where it is used to temporarily desensitize the patients’ cornea when eyes of humans or animals get overly irritated. Effects on orientation, however, had not been previously recorded. In another test group of bats, the research team anesthetized the cornea of only one eye. The individuals in the control group were not anesthetized, but instead received an isotonic saline solution as eye drops. All animals in this scientific experiment were captured within a migration corridor at the coastline of the Baltic Sea and released singly in the open field 11 kilometers inland from the capture site immediately after treatment. A captured Nathusius bat (Pipistrellus nathusii) during the experiments. Credit: Photo by Oliver Lindecke The scientists first used bat detectors to make sure that there were no other bats above the field at the time of release that the test animals could have followed. The person observing the direction of movement of released bats was unaware of how bats were treated experimentally. “The control group and the group with unilateral corneal anesthesia oriented themselves clearly in the expected southerly directions, whereas the bats with bilateral anesthetized corneas flew off in random directions,” explains Dr. Oliver Lindecke, first author of the paper. “This evident difference in behavior suggests that corneal anesthesia disrupted a sense of direction, yet orientation apparently still works well with one eye.” As corneal treatment wears off after a short time, the bats were able to resume their journeys south after the experiment. “We observed here for the first time in an experiment how a migrating mammal was literally blown off course — a milestone in behavioral and sensory biology that allows us to study the biological navigation system in a more targeted way.” In order to rule out the possibility that the anaesthetization of the cornea also affects the sense of sight and that the scientists would thus come to the wrong conclusions, they carried out a complementary test. Once again divided into experimental and control groups, they tested whether the response of bats to light changed after anesthesia of the corneas on one or both sides. “We know from previous research that bats prefer an illuminated exit when leaving a simple Y-shaped labyrinth,” explains PD Dr. Christian Voigt, head of the Leibniz-IZW Department of Evolutionary Ecology. “In our experiment, the animals with one-sided or two-sided anesthesia also showed this preference; we, therefore, can rule out that the ability to see light was altered after corneal treatment. The ability to see light would of course also influence long-distance navigation.” Many vertebrates such as bats, dolphins, whales, fish, and turtles, for example, are able to safely navigate in the darkness, whether it is under the open night sky, when it is cloudy at night or in caves and tunnels as well as in the depths of the oceans. For many decades, scientists have been searching for the sense or a sensory organ that enables animals to perform orientation and navigation tasks that seemed difficult to imagine for people. A magnetic sense, so far only demonstrated in a few mammals but poorly understood, is an obvious candidate. Experiments suggest that iron oxide particles within cells may act as “microscopic compass needles,” as is the case in some species of bacteria. Recent laboratory experiments on Ansell’s mole-rat, relatives of the well-known naked mole rats that spend their lives in elaborate underground tunnel systems, suggest that the magnetic sense is located in the eye. Such a (magnetic) sense of orientation has not been checked in migratory mammals nor has it been possible to identify the specific organ or tissue which could provide the morphological basis for the required sensory receptors. The experiments of the team around Lindecke and Voigt now provide, for the first time, reliable data for the localization of a sense of orientation in free-ranging, migratory mammals. Exactly what the sense in the cornea of the bats looks like, how it works, and whether it is the long sought-after magnetic sense must be shown in future scientific investigations. Reference: “Corneal sensitivity is required for orientation in free-flying migratory bats” by Oliver Lindecke, Richard A. Holland, Gunārs Pētersons and Christian C. Voigt, 5 May 2021, Communications Biology. DOI: 10.1038/s42003-021-02053-w
DVDV1551RTWW78V
Graphene cushion OEM factory in Taiwan 》where quality, comfort, and credibility come togetherChina graphene sports insole ODM 》built to serve both niche and mass production needsOne-stop OEM/ODM solution provider Indonesia 》small batch friendly, big on consistency
下一則: Graphene-infused pillow ODM Indonesia 》committed t
限會員,要發表迴響,請先登入

