Contents ...
udn網路城邦
Graphene insole OEM factory Taiwan 》functional, fl
2025/05/02 07:55
瀏覽40
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Taiwan foot care insole ODM development factory

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Graphene cushion OEM production factory in Taiwan

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Eco-friendly pillow OEM factory Taiwan

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Taiwan insole ODM full-service provider factory

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.ESG-compliant OEM manufacturer in Thailand

Supercomputer simulations at Los Alamos National Laboratory demonstrated that the G form of SARS-CoV-2, the dominant strain of the virus causing COVID-19, mutated to a conformation that allows it to more easily attach to host receptors, while also being more susceptible to antibodies than the original D form. Credit: Los Alamos National Laboratory Dominant G-form Spike protein ‘puts its head up’ more frequently to latch on to receptors, but that makes it more vulnerable to neutralization. Large-scale supercomputer simulations at the atomic level show that the dominant G form variant of the COVID-19-causing virus is more infectious partly because of its greater ability to readily bind to its target host receptor in the body, compared to other variantsThese research findings, led by a team from Los Alamos National Laboratory, shed light on the infection mechanism of the G form and its resistance to antibodies. This knowledge could contribute to future vaccine development. “We found that the interactions among the basic building blocks of the Spike protein become more symmetrical in the G form, and that gives it more opportunities to bind to the receptors in the host — in us,” said Gnana Gnanakaran, corresponding author of the paper published recently in Science Advances. “But at the same time, that means antibodies can more easily neutralize it. In essence, the variant puts its head up to bind to the receptor, which gives antibodies the chance to attack it.” Researchers knew that the variant, also known as D614G, was more infectious and could be neutralized by antibodies, but they didn’t know how. Simulating more than a million individual atoms and requiring about 24 million CPU hours of supercomputer time, the new work provides molecular-level detail about the behavior of this variant’s Spike. Current vaccines for SARS-CoV-2, the virus that causes COVID-19, are based on the original D614 form of the virus. This new understanding of the G variant — the most extensive supercomputer simulations of the G form at the atomic level — could mean it offers a backbone for future vaccines. The team discovered the D614G variant in early 2020, as the COVID-19 pandemic caused by the SARS-CoV-2 virus was ramping up. These findings were published in Cell. Scientists had observed a mutation in the Spike protein. (In all variants, it is the Spike protein that gives the virus its characteristic corona.) This D614G mutation, named for the amino acid at position 614 on the SARS-CoV-2 genome that underwent a substitution from aspartic acid, prevailed globally within a matter of weeks. The Spike proteins bind to a specific receptor found in many of our cells through the Spike’s receptor binding domain, ultimately leading to infection. That binding requires the receptor binding domain to transition structurally from a closed conformation, which cannot bind, to an open conformation, which can. The simulations in this new research demonstrate that interactions among the building blocks of the Spike are more symmetrical in the new G-form variant than those in the original D-form strain. That symmetry leads to more viral Spikes in the open conformation, so it can more readily infect a person. A team of postdoctoral fellows from Los Alamos — Rachael A. Mansbach (now assistant professor of Physics at Concordia University), Srirupa Chakraborty, and Kien Nguyen — led the study by running multiple microsecond-scale simulations of the two variants in both conformations of the receptor binding domain to illuminate how the Spike protein interacts with both the host receptor and with the neutralizing antibodies that can help protect the host from infection. The members of the research team also included Bette Korber of Los Alamos National Laboratory, and David C. Montefiori, of Duke Human Vaccine Institute. The team thanks Paul Weber, head of Institutional Computing at Los Alamos, for providing access to the supercomputers at the Laboratory for this research. Reference: “The SARS-CoV-2 Spike variant D614G favors an open conformational state” by Rachael A. Mansbach, Srirupa Chakraborty, Kien Nguyen, David C. Montefiori, Bette Korber, S. Gnanakaran, 16 April 2021, Science Advances.  DOI: 10.1126/sciadv.abf3671 Funding: The project was supported by Los Alamos Laboratory Directed Research and Development project 20200706ER, Director’s Postdoctoral fellowship, and the Center of Nonlinear Studies Postdoctoral Program at Los Alamos.

Long-term running substantially modifies the network of the neurons generated in young adult mice upon middle-age. Importantly, exercise increases input from hippocampal interneurons (red cells) onto ‘old’ adult-born neurons. These interneurons may play a role in reducing aging-related hyperexcitability of the hippocampus and thereby benefit memory function. Credit: Carmen Vivar, Ph.D. A new study reveals how exercise helps maintain memory function during aging. Aging is often linked with a decrease in cognitive functions. The hippocampus and neighboring cortices, which are crucial for learning and memory, are among the initial parts of the brain to be affected. Cognitive performance deficits correlate with a diminished hippocampal volume and deteriorated synaptic connectivity between the hippocampus and the (peri)-entorhinal cortex. Increasing evidence suggests that physical activity can help delay or avert these structural and functional diminutions in older individuals. A recent study conducted by Florida Atlantic University and CINVESTAV, Mexico City, Mexico, offers new insight into the benefits of exercise. This underscores the importance for adults, particularly those in middle age, to maintain physical activity throughout their lives. For the study, researchers focused on the effects of long-term running on a network of new hippocampal neurons that were generated in young adult mice, at middle age. These “mice on the run” demonstrate that running throughout middle age keeps old adult-born neurons wired, which may prevent or delay aging-related memory loss and neurodegeneration. Adult-born neurons are thought to contribute to hippocampus-dependent memory function and are believed to be temporarily important, during the so-called ‘critical period’ at about three to six weeks of cell age, when they can fleetingly display increased synaptic plasticity. However, these new neurons do remain present for many months, but it was unclear whether those born in early adulthood remain integrated into neural networks and whether their circuitry is modifiable by physical activity in middle age. To address these questions, researchers used a unique rabies virus-based circuit tracing approach with a long time interval between the initial labeling of new neurons and subsequent analysis of their neural circuitry in rodents. More than six months after tagging of the adult-born neurons with a fluorescent reporter vector, they identified and quantified the direct afferent inputs to these adult-born neurons within the hippocampus and (sub)cortical areas, when the mice were middle-aged. Results of the study, published in the journal eNeuro, show long-term running wires ‘old’ new neurons, born during early adulthood, into a network that is relevant to the maintenance of episodic memory encoding during aging. “Long-term exercise profoundly benefits the aging brain and may prevent aging-related memory function decline by increasing the survival and modifying the network of the adult-born neurons born during early adulthood, and thereby facilitating their participation in cognitive processes,” said Henriette van Praag, Ph.D., corresponding author, an associate professor of biomedical science in FAU’s Schmidt College of Medicine and a member of the FAU Stiles-Nicholson Brain Institute. Findings from the study showed long-term running significantly increased the number of adult-born neurons and enhanced the recruitment of presynaptic (sub)-cortical cells to their network. “Long-term running may enhance pattern separation ability, our ability to distinguish between highly similar events and stimuli, a behavior closely linked to adult neurogenesis, which is among the first to display deficits indicative of age-related memory decline,” said Carmen Vivar, Ph.D., corresponding author, Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del IPN in Mexico. Aging-related memory function decline is associated with the degradation of synaptic inputs from the perirhinal and entorhinal cortex onto the hippocampus, brain areas that are essential for pattern separation, and contextual and spatial memory. “We show that running also substantially increases the back-projection from the dorsal subiculum onto old adult-born granule cells,” said van Praag. “This connectivity may provide navigation-associated information and mediate the long-term running-induced improvement in spatial memory function.” Results from the study show that running not only rescued perirhinal connectivity but also increased and altered the contribution of the entorhinal cortices to the network of old adult-born neurons. “Our study provides insight as to how chronic exercise, beginning in young adulthood and continuing throughout middle age, helps maintain memory function during aging, emphasizing the relevance of including exercise in our daily lives,” said Vivar. Reference: “Running throughout Middle-Age Keeps Old Adult-Born Neurons Wired” by Carmen Vivar, Ben Peterson, Alejandro Pinto, Emma Janke and Henriette van Praag, 15 May 2023, eNeuro. DOI: 10.1523/ENEURO.0084-23.2023 Study co-authors are Ben Peterson, Ph.D., currently a postdoc at UC Davis; Alejandro Pinto, FAU’s Schmidt College of Medicine and Stiles-Nicholson Brain Institute; and Emma Janke, a recent graduate of the University of Pennsylvania. This research was supported in part by the FAU Stiles-Nicholson Brain Institute and the Jupiter Life Sciences Initiative (awarded to van Praag), and by the Fondo de Investigación Científica y Desarrollo Tecnológico del Cinvestav (Proyectos SEP-Cinvestav), (awarded to Vivar).

For the first time, researchers have identified a breathing rhythm in the human hippocampus during sleep, revealing that breathing acts as a metronome coordinating sleep oscillations. These findings, highlighting the role of breathing as a fundamental rhythm in memory consolidation, hold significant implications for individuals with disordered breathing during sleep. Breathing synchronizes brain waves that support memory consolidation. A new study from Northwestern Medicine reports that, much like a conductor harmonizes various instruments in an orchestra to create a symphony, breathing synchronizes hippocampal brain waves to enhance memory during sleep. This is the first time breathing rhythms during sleep have been linked to these hippocampal brain waves — called slow waves, spindles, and ripples — in humans. Scientists knew these waves were linked to memory but their underlying driver was unknown. “To strengthen memories, three special neural oscillations emerge and synchronize in the hippocampus during sleep, but they were thought to come and go at random times,” said senior study author Christina Zelano, professor of neurology at Northwestern University Feinberg School of Medicine. “We discovered that they are coordinated by breathing rhythms.” Corresponding study author Andrew Sheriff explains the key findings from the study and what they mean going forward. Credit: Northwestern University Northwestern scientists discovered that hippocampal oscillations occur at particular points in the breathing cycle, suggesting that breathing is a critical rhythm for proper memory consolidation during sleep. “Memory consolidation relies on the orchestration of brain waves during sleep, and we show that this process is closely timed by breathing,” said corresponding author Andrew Sheriff, a postdoctoral student in Zelano’s lab. The study was recently published in the Proceedings of the National Academy of Sciences. Implications for Sleep-Disordered Breathing The findings have important implications for disordered breathing during sleep—such as sleep apnea—which is linked with poor memory consolidation. We’ve all had the experience of better memories after a night of sleep. This was noted as far back as ancient Rome, when the scholar Quintillion wrote of the “curious fact” that “the interval of a single night will greatly increase the strength of the memory,” the study authors said. He was describing what we now call memory consolidation, which is accomplished by the exquisitely tuned coordination of different brain waves in the hippocampus. Corresponding author Andrew Sheriff looks at a computer monitor in a lab. Credit: Northwestern University “When you’re sleeping, your brain is actively replaying experiences you had during the day,” Sheriff said. Sheriff had just returned from a conference in Reykjavik, Iceland, where he had to learn his way around a new city. “The hippocampus plays a major role in forming a map of a new area,” Sheriff said. “I would wake up and feel I had a better representation of the city around me. That was facilitated by the oscillations that occurred during my sleep, which we found are coordinated by breathing.” The study indicates people with disrupted breathing during sleep should seek treatment for it, Sheriff said. “When you don’t get sleep your brain suffers, your cognition suffers, you get foggy,” Sheriff said. “We also know that sleep-disordered breathing is connected with stroke, dementia, and neurodegenerative disorders like Alzheimer’s Disease. “If you listen to someone breathing, you might be able to tell when they are asleep, because breathing is paced differently when you’re sleeping. One reason for that may be that breathing is performing a careful task: coordinating brain waves that are related to memory.” Reference: “Breathing orchestrates synchronization of sleep oscillations in the human hippocampus” by Andrew Sheriff, Guangyu Zhou, Vivek Sagar, Justin B. Morgenthaler, Christopher Cyr, Katherina K. Hauner, Mahmoud Omidbeigi, Joshua M. Rosenow, Stephan U. Schuele, Gregory Lane and Christina Zelano, 16 December 2024, Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.2405395121 The study was funded by the National Institute on Deafness and Other Communication Disorders and a Ruth L. Kirchstein Institutional National Research Award.

DVDV1551RTWW78V



Memory foam pillow OEM factory Taiwan 》the preferred OEM/ODM solution for emerging and established brandsIndonesia OEM factory for footwear and bedding 》experience you can count on, quality you can trustVietnam graphene sports insole ODM 》designed for quality-conscious brands who care about user experience

限會員,要發表迴響,請先登入