Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Ergonomic insole ODM production factory Taiwan
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Taiwan graphene sports insole ODM
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Pillow OEM for wellness brands China
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Pillow OEM for wellness brands Taiwan
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Pillow ODM design and manufacturing company in Taiwan
A team of researchers has developed a biosynthetic genetic ‘clock’ that significantly extends cellular lifespan, as reported in the journal Science. The study involved genetically rewiring the gene regulatory circuit that controls cell aging, transforming it from a toggle switch to a clock-like device or gene oscillator. This oscillator periodically switches the cell between two detrimental aged states, thereby preventing prolonged commitment to either and slowing cell degeneration. The team used yeast cells in their study and achieved an 82% increase in lifespan compared to control cells. This ground-breaking research, underpinned by computational simulations and synthetic biology, could revolutionize scientific approaches to age delay, going beyond attempts to artificially revert cells to a state of ‘youth’. The team is now expanding its research to human cell types. Studying yeast cells, researchers build a biosynthetic genetic ‘clock’ to extend lifespan. Researchers have created a synthetic genetic ‘clock’ that significantly extends cellular lifespan. By reprogramming the gene regulatory circuit that controls aging, cells periodically switch between two detrimental states, slowing their degeneration. This innovative approach, tested on yeast cells, led to an 82% lifespan increase and could revolutionize age-delay strategies. Human lifespan is related to the aging of our individual cells. Three years ago a group of University of California San Diego (UCSD) researchers deciphered essential mechanisms behind the aging process. After identifying two distinct directions that cells follow during aging, the researchers genetically manipulated these processes to extend the lifespan of cells. As described on April 27, 2023, in the journal Science, they have now extended this research using synthetic biology to engineer a solution that keeps cells from reaching their normal levels of deterioration associated with aging. Cells, including those of yeast, plants, animals, and humans, all contain gene regulatory circuits that are responsible for many physiological functions, including aging. “These gene circuits can operate like our home electric circuits that control devices like appliances and automobiles,” said Professor Nan Hao of the School of Biological Sciences’ Department of Molecular Biology, the senior author of the study and co-director of UC San Diego’s Synthetic Biology Institute. Engineered cells show oscillating abundance of a master aging regulator. Credit: Hao Lab, UC San Diego The Two Aging Pathways in Cells However, the UC San Diego group uncovered that, under the control of a central gene regulatory circuit, cells don’t necessarily age the same way. Imagine a car that ages either as the engine deteriorates or as the transmission wears out, but not both at the same time. The UC San Diego team envisioned a “smart aging process” that extends cellular longevity by cycling deterioration from one aging mechanism to another. In the new study, the researchers genetically rewired the circuit that controls cell aging. From its normal role functioning like a toggle switch, they engineered a negative feedback loop to stall the aging process. The rewired circuit operates as a clock-like device, called a gene oscillator, that drives the cell to periodically switch between two detrimental “aged” states, avoiding prolonged commitment to either, and thereby slowing the cell’s degeneration. These advances resulted in a dramatically extended cellular lifespan, setting a new record for life extension through genetic and chemical interventions. As electrical engineers often do, the researchers in this study first used computer simulations of how the core aging circuit operates. This helped them design and test ideas before building or modifying the circuit in the cell. This approach has advantages in saving time and resources to identify effective pro-longevity strategies, compared to more traditional genetic strategies. “This is the first time computationally guided synthetic biology and engineering principles were used to rationally redesign gene circuits and reprogram the aging process to effectively promote longevity,” said Hao. Record-Breaking Lifespan Extension in Yeast Several years ago the multidisciplinary UC San Diego research team began studying the mechanisms behind cell aging, a complex biological process that underlies human longevity and many diseases. They discovered that cells follow a cascade of molecular changes through their entire lifespan until they eventually degenerate and die. But they noticed that cells of the same genetic material and within the same environment can travel along distinct aging routes. About half of the cells age through a gradual decline in the stability of DNA, where genetic information is stored. The other half ages along a path tied to the decline of mitochondria, the energy production units of cells. The new synthetic biology achievement has the potential to reconfigure scientific approaches to age delay. Distinct from numerous chemical and genetic attempts to force cells into artificial states of “youth,” the new research provides evidence that slowing the ticks of the aging clock is possible by actively preventing cells from committing to a pre-destined path of decline and death, and the clock-like gene oscillators could be a universal system to achieve that. “Our results establish a connection between gene network architecture and cellular longevity that could lead to rationally-designed gene circuits that slow aging,” the researchers note in their study. During their research, the team studied Saccharomyces cerevisiae yeast cells as a model for the aging of human cells. They developed and employed microfluidics and time-lapse microscopy to track the aging processes across the cell’s lifespan. In the current study, yeast cells that were synthetically rewired and aged under the direction of the synthetic oscillator device resulted in an 82% increase in lifespan compared with control cells that aged under normal circumstances. The results revealed “the most pronounced lifespan extension in yeast that we have observed with genetic perturbations,” they noted. “Our oscillator cells live longer than any of the longest-lived strains previously identified by unbiased genetic screens,” said Hao. “Our work represents a proof-of-concept example, demonstrating the successful application of synthetic biology to reprogram the cellular aging process,” the authors wrote, “and may lay the foundation for designing synthetic gene circuits to effectively promote longevity in more complex organisms.” The team is currently expanding its research to the aging of diverse human cell types, including stem cells and neurons. Reference: “Engineering longevity—design of a synthetic gene oscillator to slow cellular aging” by Zhen Zhou, Yuting Liu, Yushen Feng, Stephen Klepin, Lev S. Tsimring, Lorraine Pillus, Jeff Hasty and Nan Hao, 27 April 2023, Science. DOI: 10.1126/science.add7631 The research team, Zhen Zhou, Yuting Liu, Yushen Feng, Stephen Klepin, Lev Tsimring, Lorraine Pillus, Jeff Hasty and Nan Hao, are based across UC San Diego, including the Department of Molecular Biology (School of Biological Sciences), Synthetic Biology Institute, Moores Cancer Center (UC San Diego Health) and Shu Chien-Gene Lay Department of Bioengineering (Jacobs School of Engineering).
Mirlatia arcuata, a newly discovered moth species in Europe, reveals gaps in our knowledge of European Lepidoptera. Its unique characteristics and the mystery surrounding its habitat and adaptation highlight the ongoing need for research in this field. Above is an adult male of Mirlatia arcuata. Credit: Hausmann et al. European Lepidoptera, comprising butterflies and moths, are known to have around 11,000 species and are considered well-researched. However, the discovery of a new genus and species within the Geometrid moth family, suggests there’s still much to learn. The findings were recently published in the journal ZooKeys. The moth, named Mirlatia arcuata, by a research team from Germany, Austria, and the United Kingdom, is one of the most remarkable discoveries in Lepidoptera of recent decades. Decades-old UFO In the early 1980s, Austrian amateur entomologist Robert Hentscholek collected three specimens of a moth species in southern Dalmatia, Croatia, which were integrated into his collection or given to colleagues without being identified. Decades later, the collection was sold to Toni Mayr, another hobbyist researcher from Austria, who immediately noticed the unusual insect that stood out from all known European species and couldn’t even be assigned to a known genus. Light traps are set in Podgora, Croatia, in 2022. Credit: Stanislav Gomboc The collector was contacted to provide more information, and it turned out that a male and a female specimen of the same species had been given to another collector who had since passed away. The female specimen was rediscovered in 2015 in the collection of the Natural History Museum in Vienna, while the whereabouts of the other specimen remained unknown. The unique male was finally presented to the Tyrolean Federal State Museums by Toni Mayr. In 2022, a research team was formed to identify this enigmatic moth, and it was finally described as a new genus and species in early November 2023. It was given the name Mirlatia arcuata, where Mirlatia is an aggregate of the stems of two Latin words that translate loosely as “bringing a surprise,” a reference to the surprising discovery of this curious new moth. Cold-adapted or introduced? The discovery of such a large and distinctive moth species in a well-explored region like southern Croatia might seem unlikely. However, according to researcher Peter Huemer of the Tyrolean State Museums (Ferdinandeum), who took part in the study, there was surprisingly little research conducted in that area during the moth’s flight season in March. “It’s possible that Mirlatia arcuata is a cold-adapted, winter-active species that would need to be sought in the middle of winter,” he says. Habitat of Mirlatia arcuata in Podgora, Croatia. Credit: Stanislav Gomboc The hypothesis of introduction from other continents was discarded by the study authors for several reasons. Axel Hausmann from the Zoological State Collection in Munich examined all known moths from cold regions in the northern and southern hemisphere and could not identify a similar species from these regions. Furthermore, the collecting location in Podgora is not in close proximity to a port, and during the Yugoslavian era, the traffic in Dalmatian ports was rather limited. Also, Split and other Croatian ports were rarely visited by ships from other continents during the communist period. Additionally, Robert Hentscholek had never collected in the tropics, ruling out the possibility of a labeling error. Many questions, few answers Despite all efforts, the relationships of the new genus and species have not been definitively clarified. Even the assignment to the subfamily Larentiinae is not entirely secure and is based on a few features like wing venation. Initial genetic data from the mitochondrial COI barcode, as well as characteristics of the tympanal organ (auditory organ), point to a largely independent systematic position of the species. Further investigations of the entire genome could provide more clarity. Even less is known about the biology of the new species, apart from the fact that its known habitat consists of coastal rock biotopes with Mediterranean vegetation. In March 2022, Slovenian lepidopterologist Stane Gomboc initiated a comprehensive search, but it turned out to be unsuccessful. It’s possible that the moth’s flight season has already ended due to climate warming. The study authors hope they will soon rediscover Mirlatia arcuata and know more about its habitat requirements and biology. Reference: “Surprising discovery of an enigmatic geometrid in Croatia: Mirlatia arcuata, gen. nov., sp. nov. (Lepidoptera, Geometridae)” by Axel Hausmann, Gyula M. László, Toni Mayr and Peter Huemer, 1 November 2023, ZooKeys. DOI: 10.3897/zookeys.1183.110163
A team of scientists discovered a naturally occurring gene in the poplar tree that enhances photosynthetic activity and significantly boosts plant growth. The gene, Booster, contains DNA from two associated organisms found within the tree, and from a protein known as Rubisco that is essential to photosynthesis. Credit: Andy Sproles, ORNL/U.S. Dept. of Energy The BOOSTER gene in poplar trees boosts photosynthesis and biomass, with potential applications for improving crop yields. Researchers from the Center for Advanced Bioenergy and Bioproducts Innovation at the University of Illinois Urbana-Champaign, in collaboration with the Center for Bioenergy Innovation at Oak Ridge National Laboratory, have discovered a gene in poplar trees that improves photosynthesis and can boost tree height. Chloroplasts are the principal cell structures that house the photosynthetic apparatus converting light energy into the chemical energy that fuels plant growth. Specifically, the Rubisco protein captures carbon dioxide from the atmosphere. Scientists have for years been working on ways to boost the amount of Rubisco in plants for greater crop yield and absorption of atmospheric CO2. “Historically, a lot of studies have focused on steady-state photosynthesis where every condition is kept constant. However, this is not representative of the field environment in which light can vary all the time,” said Steven Burgess, an assistant professor of integrative biology at Illinois. “Over the last few years, these dynamic processes have been considered to be more important and are not well understood.” From left, ORNL’s Biruk Feyissa holds a five-month-old poplar tree expressing high levels of the BOOSTER gene, while colleague Wellington Muchero holds a tree of the same age with lower expression of the gene. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy Unlocking Genetic Potential in Poplar Trees In the new study, the researchers focused on poplar since it is a fast-growing crop and a leading candidate for making biofuels and bioproducts. They sampled ~1,000 trees in outdoor research plots and analyzed their physical characteristics and genetic makeup to perform a genome-wide association study. The team used the GWAS population to look for candidate genes that had been linked to photosynthetic quenching, a process that regulates how quickly plants adjust between sun and shade and dissipate excess energy from too much sun to avoid damage. One of the genes, which the researchers named BOOSTER, was unusual because it is unique to poplar and although it is in the nuclear genome contains a sequence which originated from the chloroplast. The team discovered that this gene was able to increase the Rubisco content and subsequent photosynthetic activity, resulting in taller polar plants when grown in greenhouse conditions. In field conditions, scientists found that genotypes with higher expression of BOOSTER were up to 37% taller, increasing biomass per plant. The team also inserted BOOSTER in a different plant, Arabidopsis, or thale cress, resulting in an increase in biomass and seed production. This finding indicates the wider applicability of BOOSTER to potentially trigger higher yields in other plants. “It is an exciting first step, although these are small-scale experiments, and there is a lot of work to be done, if we can reproduce the results on a large scale, this gene has the potential to increase biomass production in crops,” Burgess said. Next steps in the research could encompass testing in other bioenergy and food plants, with researchers recording plant productivity in varying growing conditions to analyze long-term success. They will also be investigating the other genes that were identified in the GWAS study that could contribute to crop improvement. For more on this study, see Breakthrough Gene Supercharges Plant Growth and Boosts Photosynthesis. Reference: “An orphan gene BOOSTER enhances photosynthetic efficiency and plant productivity” by Biruk A. Feyissa, Elsa M. de Becker, Coralie E. Salesse-Smith, Jin Zhang, Timothy B. Yates, Meng Xie, Kuntal De, Dhananjay Gotarkar, Margot S.S. Chen, Sara S. Jawdy, Dana L. Carper, Kerrie Barry, Jeremy Schmutz, David J. Weston, Paul E. Abraham, Chung-Jui Tsai, Jennifer L. Morrell-Falvey, Gail Taylor, Jin-Gui Chen, Gerald A. Tuskan and Wellington Muchero, 3 December 2024, Developmental Cell. DOI: 10.1016/j.devcel.2024.11.002 The research was supported by CBI and CABBI, both sponsored by the DOE Office of Science Biological and Environmental Research Program.
DVDV1551RTWW78V
Indonesia flexible graphene product manufacturing 》designed for quality-conscious brands who care about user experienceErgonomic insole ODM support Taiwan 》crafted to meet the needs of todayis conscious consumersChina graphene material ODM solution 》your competitive edge in product performance and speed
下一則: China graphene sports insole ODM 》built to serve b
限會員,要發表迴響,請先登入

