Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Pillow OEM for wellness brands Taiwan
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Custom foam pillow OEM in Thailand
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Arch support insole OEM from Indonesia
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Graphene insole manufacturer in Indonesia
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.China custom insole OEM supplier
The researchers also found that decreasing ATP levels enhances ClpXP (a damage-repairing enzyme)-mediated degradation of some classes of substrates. A specific enzyme may play dual roles in cell health according to a recent study from the University of Massachusetts Amherst. Exploring Cellular Stress Response A team of researchers from the University of Massachusetts Amherst investigated the mysteries surrounding how cells handle stress in a recent study that was published in the journal Cell Reports. Researchers found that a damage-repairing enzyme known as ClpX may not only mutate to fix multiple cellular issues but can also react to shifting levels of cellular energy to maintain cell health. “What we’re really interested in,” says Peter Chien, professor of biochemistry and molecular biology at UMass Amherst and the paper’s senior author, “is how cells respond to stress. We study a class of enzymes, called proteases, which target and destroy harmful proteins within a cell. These proteases can selectively recognize specific, individual proteins singular proteins. But how do they do this? How can they choose between healthy proteins and harmful ones?” Rendering of the protease ClpX: the gray part recognizes the harmful protein, the orange grabs onto it, and the blue destroys it. Credit: Chien Lab Chien and his co-authors focused on two specific proteases, called Lon and ClpX, each of which is finely tuned to recognize a different harmful protein, to answer this question. It had long been believed that Lon and ClpX functioned similarly to keys: each could only open one kind of lock and not another, and if a cell lacked either, severe side effects would result. “If you’ve ever had an extremely messy college roommate,” says Chien, “you know how important it is to empty the trash regularly. Missing the Lon protease is like having a roommate who never washes, changes, or cleans.” Discovery of Protease Flexibility But following a series of experiments in which Lon was removed from bacterial cell colonies, Chien’s team saw something strange: some of the colonies were still alive. Peter Chien (right) and UMass undergraduate researcher Oluwabusola Oreofe (left) running experiments in the Chien lab. Credit: UMass Amherst This observation led to their first discovery: ClpX can mutate to perform a Lon-like function, though it loses some of its ClpX abilities. It’s as if, to keep your dorm room clean, you started washing your roommate’s socks, but had to sacrifice some of your own clean laundry to do so. In tracing out exactly how the ClpX mutation allowed the protease to expand its function, the team made its second discovery: wild, non-mutant ClpX can also perform some of Lon’s duties, under the right conditions. It turns out that ClpX is highly sensitive to ATP, an organic compound that is the energy source for all living cells. At normal levels of ATP, ClpX focuses on its own duties, but at a specific, lower threshold it suddenly starts cleaning up after Lon. “This is a real breakthrough in the basic understanding of how cells work,” says Chien. “It changes the rules: not only does cellular energy control how fast a cell works, but how it works, as well.” Reference: “ATP hydrolysis tunes specificity of a AAA+ protease” by Samar A. Mahmoud, Berent Aldikacti and Peter Chien, 20 September 2022, Cell Reports. DOI: 10.1016/j.celrep.2022.111405 The study was funded by the University of Massachusetts Amherst’s National Institutes of Health Chemistry Biology Interface Training Program, the Howard Hughes Medical Institute, the National Institutes of Health, and UMass Amherst’s Institute for Applied Life Sciences (IALS).
3D model of Barbourofelis fricki. Credit: Narimane Chatar Research conducted by the University of Liège sheds new light on the mechanisms behind the bites of saber-toothed carnivores. Narimane Chatar, a Ph.D. student at the EDDyLab of the University of Liège (Belgium) led a team of researchers to examine the biting capabilities of Smilodon, an extinct species of carnivore that is related to modern-day felines. By utilizing advanced 3D scanning and simulation techniques, the team discovered how Smilodon was able to bite effectively despite the large size of their teeth. Throughout their evolution, ancient carnivorous mammals developed a diverse array of skull and tooth shapes. However, few have been as striking as those of the iconic saber-toothed felid, Smilodon. Other groups of mammals, such as the extinct nimravids, also evolved similar morphology, but with shorter canines, akin to those of modern-day lions, tigers, caracals, domestic cats, etc. This phenomenon of similar morphologies appearing in different groups of organisms is known as convergent evolution; felids and nimravids are amazing examples of convergence. As there are no modern equivalents of animals with such saber-shaped teeth, the hunting method of Smilodon and similar species have remained obscure and hotly debated. It was first suggested that all saber-toothed species hunted in the same way, regardless of the length of their canines, a hypothesis that is now controversial. So the question remained … how did this variety of ‘saber-toothed cat’ hunt? The cooler colors on the heat maps of the saber-toothed species indicate lower stress and higher force, especially when biting at higher angles. Credit: Massimo Molinero The enormous canines of the extinct saber-toothed cat Smilodon imply that this animal had to open its jaw extremely wide, 110° according to some authors, in order to use them effectively,” explains Prof. Valentin Fischer, director of the EDDyLab at ULiège. However, the mechanical feasibility and efficiency of Smilodon and its relatives to bite at such a large angle is unknown, leaving a gap in our understanding of this very fundamental question about saber-toothed predators.” 3D Simulations of Saber-Toothed Predators Using high-precision 3D scanners and analytical methods derived from engineering, an international team of Belgian and North American scientists has just revealed how these animals probably used their impressive weapons. Narimane Chatar, a Ph.D. student at the EDDyLab of the University of Liege and lead author of the study, collected a large amount of three-dimensional data. She first scanned and modeled the skulls, mandibles, and muscles of numerous extinct and extant species of felids and nimravids. The cooler colors on the heat maps of the saber-toothed species indicate lower stress and higher force, especially when biting at higher angles. Credit: Massimo Molinero “Each species was analyzed in several scenarios: a bite was simulated on each tooth at three different biting angles: 30°, as commonly seen in extant felids, but also larger angles (60° and 90°). In total, we carried out 1,074 bite simulations to cover all the possibilities,” explains Narimane Chatar. To do this, the young researcher used the finite element method. This is an exciting application of the finite element approach, which allows paleontologists to modify and computationally simulate different bite angles and to subject skull models to virtual stresses without damaging the precious fossil specimens,” says Professor Jack Tseng, Professor and Curator of Paleontology at the University of California, Berkeley, and co-author of the study. Our comprehensive analyses provide the most detailed insight to date into the diversity and nuances of saber tooth bite mechanics.” One of the results obtained by the team is the understanding of the distribution of stress (pressure) on the mandible during biting. This stress shows a continuum across the animals analyzed, with the highest values measured in species with the shortest upper canines and the lowest stress values measured in the most extreme saber-toothed species. The researchers also noted that stress decreased with increasing bite angle but only in saber-toothed species. However, the way in which these animals transmitted force to the bite point and the deformation of the mandible resulting from the bite were remarkably similar across the dataset, indicating comparable effectiveness regardless of canine length. Evolutionary Diversity in Predator Morphologies “The results show both the possibilities and the limits of evolution; animals facing similar problems in their respective ecosystems often end up looking alike through convergent evolution. However, Narimane Chatar’s results also show that there can be several ways to be an effective killer, whether you are saber-toothed or not,” concludes Valentin Fischer. This phenomenon, called ’many-to-one’ systems, means that distinct morphologies can result in a similar function, such as the fact that bears and cats are both efficient fishers. This multiplicity of morphologies indicates that there is no single optimal form of saber-toothed predator. Reference: “Many-to-one function of cat-like mandibles highlights a continuum of sabre-tooth adaptations” by Narimane Chatar, Valentin Fischer and Z. Jack Tseng, 7 December 2022, Proceedings of the Royal Society B: Biological Sciences. DOI: 10.1098/rspb.2022.1627
Groundbreaking research, analyzing eyes from various species, highlights the ancient origins and evolutionary conservation of retinal cell types. This study, revealing both cross-species similarities and species-specific adaptations, offers crucial insights for eye disease research and our understanding of vision evolution. Credit: SciTechDaily.com Though vertebrates vary widely in the number of retinal cell types, most seem to have a common origin. Karthik Shekhar and his colleagues raised a few eyebrows as they collected cow and pig eyes from Boston butchers, but those eyes — eventually from 17 separate species, including humans — are providing insights into the evolution of the vertebrate retina and could lead to better animal models for human eye diseases. The retina is a miniature computer containing diverse types of cells that collectively process visual information before transmitting it to the rest of the brain. In a comparative analysis across animals of the many cell types in the retina — mice alone have 130 types of cells in the retina, as Shekhar’s previous studies have shown — the researchers concluded that most cell types have an ancient evolutionary history. These cell types, distinguished by their differences at the molecular level, give clues to their functions and how they participate in building our visual world. Ancient Origins of Retinal Cells Their remarkable conservation across species suggests that the retina of the last common ancestor of all mammals, which roamed the Earth some 200 million years ago, must have had a complexity rivaling the retina of modern mammals. In fact, there are clear hints that some of these cell types can be traced back more than 400 million years ago to the common ancestors of all vertebrates — that is, mammals, reptiles, birds and jawed fish. The retina of vertebrate species, such as mice and humans, are remarkably conserved since the origin of jawed vertebrates more than 400 million years ago. This diagram shows the similarities between the retinal cells of humans and mice, including the ON and OFF “midget” retinal ganglion cells (MGCs). Credit: Hugo Salais, Metazoa Studio, Spain The results were published on December 13 in the journal Nature as part of a 10-paper package reporting the latest results of the BRAIN Initiative Cell Census Network’s efforts to create a cell-type atlas of the adult mouse brain. The first author is Joshua Hahn, a chemical and biomolecular engineering graduate student in Shekhar’s group at the University of California, Berkeley. The work was an equal collaboration with the group of Joshua Sanes at Harvard University. Surprising Findings in Vertebrate Vision The findings were a surprise, since vertebrate vision varies so widely from species to species. Fish need to see underwater, mice and cats require good night vision, and monkeys and humans evolved very sharp daytime eyesight for hunting and foraging. Some animals see vivid colors, while others are content with seeing the world in black and white. Yet, numerous cell types are shared across a range of vertebrate species, suggesting that the gene expression programs that define these types likely trace back to the common ancestor of jawed vertebrates, the researchers concluded. The team found, for example, that one cell type — the “midget” retinal ganglion cell — that is responsible for our ability to see fine detail, is not unique to primates, as it was thought to be. By analyzing large-scale gene expression data using statistical inference approaches, the researchers discovered evolutionary counterparts of midget cells in all other mammals, though these counterparts occurred in much smaller proportions. “What we are seeing is that something thought to be unique to primates is clearly not unique. It’s a remodeled version of a cell type that is probably very ancient,” said Shekhar, a UC Berkeley assistant professor of chemical and biomolecular engineering. “The early vertebrate retina was probably extremely sophisticated, but the parts list has been used, expanded, repurposed, or refurbished in all the species that have descended since then.” Coincidentally, one of Shekhar’s UC Berkeley colleagues, Teresa Puthussery of the School of Optometry, reported last month in Nature that another cell type thought to have been lost in the human eye — a type of retinal ganglion cell responsible for gaze stabilization — is still there. Puthussery and her colleagues used information from a previous paper co-authored by Shekhar to select molecular markers that helped identify this cell type in primate retinal tissue samples. Similarities in Vertebrate Eyes The discoveries are, in a sense, not a total surprise, since the eyes of vertebrates have a similar plan: Light is detected by photoreceptors, which relay the signal to bipolar, horizontal, and amacrine cells, which in turn connect with retinal ganglion cells, which then relay the results to the brain’s visual cortex. Shekhar uses new technologies, in particular single-cell genomics, to assay the molecular composition of thousands to tens of thousands of neurons at once within the visual system, from the retina to the visual cortex. Because the number of identified retinal cell types varies widely in vertebrates — about 70 in humans, but 130 in mice, based on previous studies by Shekhar and his colleagues — the origins of these diverse cell types were a mystery. One possibility that emerged from the new research, Shekhar said, is that as the primate brain became more complex, primates began to rely less on signal processing within the eye — which is key to reflexive actions, such as reacting to an approaching predator — and more on analysis within the visual cortex. Hence the apparent decrease in molecularly distinct cell types in the human eye. Evolution of Human Retina “Our study is saying that the human retina may have evolved to trade cell types that perform sophisticated visual computations for cell types that basically just transmit a relatively unprocessed image of the visual world with the brain so that we can do a lot more sophisticated things with that,” Shekhar said. “We are giving up speed for finesse.” Implications for Eye Disease Research The team’s new detailed map of cell types in a variety of vertebrate retinas could aid research on human eye disease. Shekhar’s group is also studying molecular hallmarks of glaucoma, the leading cause of irreversible blindness in the world and, in the U.S., the second most common cause of blindness after macular degeneration. Yet, while mice are a favorite model animal for studying glaucoma, they have very few of the midget retinal ganglion cell counterparts. These cell types make up only 2% to 4% of all ganglion cells in mice, whereas 90% of retinal ganglion cells are midget cells in humans. “This work is clinically important because, ultimately, the midget cells are probably what we should care about the most in human glaucoma,” Shekhar said. “Knowing their counterparts in the mouse will hopefully help us design and interpret these glaucoma mouse models a little better.” Single-Cell Transcriptomics in Retinal Research Shekhar and Sanes have, for the past eight years, been applying single-cell genomic approaches to profile the mRNA molecules in cells to categorize them according to their gene expression fingerprints. That technique has gradually helped identify more and more distinct cell types within the retina, many of them through studies that Shekhar initiated while a postdoctoral fellow with Aviv Regev, one of the pioneers of single-cell genomics, at the Broad Institute. It was in her lab that Shekhar began working with Sanes, a renowned retinal neurobiologist who became Shekhar’s co-advisor and collaborator. In the current study, they wanted to expand their single-cell transcriptomic approach to other species to understand how retinal cell types have changed through evolution. They gathered, in all, eyes from 17 species: human, two monkeys (macaque and marmoset), four rodents (three species of mice and one ground squirrel), three ungulates (cow, sheep and pig), tree shrew, opossum, ferret, chicken, lizard, zebrafish and lamprey. With Sanes’ team at Harvard conducting the transcriptomic experiments and Shekhar’s team at UC Berkeley conducting the computational analysis, many new cell types were identified in each of the species. They then mapped this variety to a smaller set of “orthotypes” — cell types that have likely descended from the same ancestral cell type in early vertebrates. For bipolar cells, which are a class of neurons that lie between the photoreceptors and retinal ganglion cells, they found 14 distinct orthotypes. Most extant species contain 13 to 16 bipolar types, suggesting that these types have evolved little. In contrast, they found 21 orthotypes of retinal ganglion cells, which exhibit greater variation among species. Studies thus far have identified more than 40 distinct types in mice and about 20 different types in humans. Evolutionary Divergence and Conservation Interestingly, the pronounced evolutionary divergence among types of retinal ganglion cells, as compared to other retinal classes, suggests that natural selection acts more strongly on diversifying neuron types that transmit information from the retina to the rest of the brain. They also found that numerous transcription factors, which have been implicated in retinal cell type specification in mice, are highly conserved, suggesting that the molecular steps leading to the development of the retina might be evolutionarily conserved, as well. Based on the new work, Shekhar is refocusing his glaucoma research on the analogs of midget cells, called alpha cells, in mice. Reference: “Evolution of neuronal cell classes and types in the vertebrate retina” by Joshua Hahn, Aboozar Monavarfeshani, Mu Qiao, Allison H. Kao, Yvonne Kölsch, Ayush Kumar, Vincent P. Kunze, Ashley M. Rasys, Rose Richardson, Joseph B. Wekselblatt, Herwig Baier, Robert J. Lucas, Wei Li, Markus Meister, Joshua T. Trachtenberg, Wenjun Yan, Yi-Rong Peng, Joshua R. Sanes and Karthik Shekhar, 13 December 2023, Nature. DOI: 10.1038/s41586-023-06638-9 The work was supported primarily by the National Institutes of Health (K99EY033457, R00EY028625, R21EY028633, U01MH105960, T32GM007103), the Chan-Zuckerberg Initiative (CZF-2019-002459) and the Glaucoma Research Foundation (CFC4). Shekhar also acknowledges support from the Hellman Fellows Program. Sanes was funded in part by NIH’s Brain Research Through Advancing Innovative Neurotechnologies Initiative, or the BRAIN Initiative.
DVDV1551RTWW78V
Indonesia OEM/ODM hybrid insole services 》driving your product success through every stage of manufacturingODM pillow for sleep brands Taiwan 》your go-to partner for comfort-focused OEM/ODM solutionsLatex pillow OEM production in Taiwan 》supporting your ESG goals through sustainable production
下一則: Graphene-infused pillow ODM Taiwan 》your go-to par
限會員,要發表迴響,請先登入

