Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
ODM pillow factory in Vietnam
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Customized sports insole ODM factory Taiwan
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Soft-touch pillow OEM service in Taiwan
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Indonesia graphene product OEM service
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Arch support insole OEM from Indonesia
The spotted hyena’s cadaver in Elba Protected Area. Credit: Courtesy of the Author. Mammalia/De Gruyter Brill. Climatic conditions, shifts in livestock grazing, and human activities in the region may have contributed to a doomed journey. A spotted hyena (Crocuta crocuta) has been spotted in southeastern Egypt for the first time in thousands of years, marking a significant event in the region’s wildlife history. According to a study published in Mammalia by De Gruyter, the hyena was a lone individual and was captured and killed by locals approximately 30 kilometers from the Sudanese border. “My first reaction was disbelief until I checked the photos and videos of the remains,” said the study’s lead author, Dr. Adbullah Nagy from Al-Azhar University, Egypt. “Seeing the evidence, I was completely taken aback. It was beyond anything we had expected to find in Egypt.” Hyena Sighted Far from Known Range The sighting took place some 500km north of the known range of spotted hyenas in neighboring Sudan. The researchers theorized that a regional, decadal weather cycle, part of the Active Red Sea Trough phenomenon, could have resulted in increased rainfall and plant growth, opening up a migration corridor for the hyena where better grazing opportunities supported sufficient prey. New spotted hyena record in Egypt (triangle) in relation to the known distributional range (hashed) and potential corridor area (bold dashed line) in which NDVI values were calculated between 1984 and 2022. Credit: Courtesy of authors. Mammalia/De Gruyter Brill To test this idea, they used a normalized difference vegetation index (NDVI) as a measure of precipitation and corresponding pastoral grazing opportunity, with NDVI values obtained from Landsat 5 and 7 satellite images between 1984 and 2022. Analysis revealed multi-year droughts with shorter relatively wet periods. The last five years had higher NVDI values than the previous two decades, suggesting increased plant growth could support prey for a curious spotted hyena on the move. “The fact that the corridor area has become less environmentally harsh, offering easier passage along ‘the highway’, may explain how the hyena reached this far north,” says Nagy. “However, the motivation for its extensive journey into Egypt is still a mystery that demands further research.” Spotted hyenas are successful pack predators, usually found in a variety of habitats in sub-Saharan Africa. They can travel up to 27km in a day, shadowing semi-nomadic, human-managed livestock migrations and subsisting on occasional kills. Incident in Wadi Yahmib The individual described in this study killed two goats herded by people in Wadi Yahmib in the Elba Protected Area, and was subsequently tracked, spotted, chased, and killed in late February 2024. The kill was photographed and geolocated, giving animal ecologists the opportunity to follow up on the sighting. The study’s findings force a rethink of the agreed distribution of spotted hyenas and add to the available data on how regional climate change can affect animal migration. Reference: “First record of the spotted hyena Crocuta crocuta in Egypt during the past 5,000 years” by Abdullah Nagy, Said El-Kholy, Alaaeldin Soultan and Omar Attum, 15 November 2024, Mammalia. DOI: 10.1515/mammalia-2024-0031
A recent study explores the evolution and function of the human growth hormone receptor gene, probing into the forces that may have influenced changes to this crucial DNA segment throughout human history. The research suggests that a shortened version of the gene, specifically a variant called GHRd3, could aid survival in environments with limited or unpredictable resources, as evidenced through various lines of investigation. A paper in Science Advances focuses on the evolution of the human growth hormone receptor gene. A new study delves into the evolution and function of the human growth hormone receptor gene, and asks what forces in humanity’s past may have driven changes to this vital piece of DNA. The research shows, through multiple avenues, that a shortened version of the gene — a variant known as GHRd3 — may help people survive in situations where resources are scarce or unpredictable. Findings were published on September 24, 2021, in Science Advances. Here’s the story the study tells: GHRd3 emerged about 1-2 million years ago, and was likely the overwhelmingly predominant version of the gene in the ancestors of modern humans, as well as in Neanderthals and Denisovans. Then, “In the last 50,000 years or so, this variant becomes less prevalent, and you have a massive decrease in the frequency of this variant among East Asian populations we studied, where we see the estimated allele frequency drop from 85% to 15% during the last 30,000 years,” says University at Buffalo evolutionary biologist Omer Gokcumen. “So the question becomes: Why? Was this variant favored in the past, and it fell out of evolutionary favor recently? Or is what we are observing just a blip among the complexity of genomes?” Infographic showing that some modern humans have the GHRd3 deletion, while all four archaic hominins studied — three Neanderthals and one Denisovan — had the deletion. Credit: Rebecca Farnham / Marie Saitou / University at Buffalo. Genome assembly diagrams generated by the Integrative Genomics Viewer The research provides new insights into the function of GHRd3 that may help explain why these evolutionary changes occurred, demonstrating that the variant may be useful in coping with nutritional stress. “We think that this variant is beneficial where there are periods of starvation, which was the case for most of human evolution,” says Gokcumen, PhD, associate professor of biological sciences in the UB College of Arts and Sciences. With regard to GHRd3’s waning prominence in recent human history, he speculates that, “Maybe the rapid technological and cultural advances over the past 50,000 years have created a buffer against some of the fluctuations in resources that made GHRd3 so advantageous in the past.” “GHRd3 is interesting because it is a very common deletion that is variable between you and me among humans,” says Marie Saitou, PhD, tenure-track investigator at the Norwegian University of Life Sciences and a former postdoctoral researcher in Gokcumen’s lab at UB. “Normally, these kinds of important fundamental genes do not change between human to human, and are highly conserved in other animals even.” The work was led by Saitou; Skyler Resendez, PhD, a recent UB graduate in biological sciences who is now a postdoctoral fellow in biomedical informatics in the Jacobs School of Medicine and Biomedical Sciences at UB; Xiuqian Mu, MD, PhD, associate professor of ophthalmology in the Jacobs School at UB and at the Ross Eye Institute; and Gokcumen. An international team of collaborators contributed perspectives in this study, which integrated advanced population genetics methods with research in a mouse model to understand the complicated history and function of a genetic variant. A close look at possible functions of GHRd3 The growth hormone receptor gene plays a major role in controlling the body’s response to growth hormone, helping to activate processes that lead to growth. To study the gene’s evolutionary history, scientists looked at the genomes of many modern humans, as well as those of four archaic hominins — three Neanderthals from different parts of the world, and one Denisovan. (All four had the GHRd3 variant.) The team also investigated GHRd3’s modern functions. For example, the researchers found that the GHRd3 variant was associated with better outcomes in a group of children who had endured and survived severe malnutrition. Additionally, studies on mice supported the idea that GHRd3 helps to regulate the body’s response to food scarcity. Male mice with the variant had some biological similarities to mice that had reduced access to food — traits that may be beneficial in surviving nutritional stress, the study found. And when scientists placed male mice with GHRd3 on a low-calorie diet, the animals were smaller at 2 months old than counterparts without the variant. This may be beneficial in times of nutritional stress, as smaller bodies need less food. Because the effects of GHRd3 were not as prominent in females, male and female mice carrying the variant ended up being the same size when they were on a low-calorie diet (usually, males are significantly larger than females). “Our study points to sex- and environment-specific effects of a common genetic variant. In the mice, we observed that Ghrd3 leads to a ‘female-like’ expression pattern of dozens of genes in male livers under calorie restriction, which potentially leads to the observed size reduction,” Saitou says. “Females, already smaller in size, may suffer from negative evolutionary consequences if they lose body weight. Thus, it is a reasonable and also very interesting hypothesis that a genetic variant that may affect response to nutritional stress has evolved in a sex-specific manner,” Mu says. “Despite its prevalence in human populations, this unique genetic deletion has not been observed in any other living species,” Resendez says. “This makes it difficult to study. However, scientific advancements now give us the ability to edit genomes in a targeted fashion. This allowed us to generate a mouse model containing the deletion so that we could observe its effects closely in a controlled manner.” “It is an exciting time for doing research on human evolution, where it is now possible to integrate data from ancient genomes, gene editing technologies, and advanced mathematical approaches to tell the human story in all its messy glory,” Gokcumen says. Reference: “Sex-specific phenotypic effects and evolutionary history of an ancient polymorphic deletion of the human growth hormone receptor” by Marie Saitou, Skyler Resendez, Apoorva J. Pradhan, Fuguo Wu, Natasha C. Lie, Nancy J. Hall, Qihui Zhu, Laura Reinholdt, Yoko Satta, Leo Speidel, Shigeki Nakagome, Neil A. Hanchard, Gary Churchill, Charles Lee, G. Ekin Atilla-Gokcumen, Xiuqian Mu and Omer Gokcumen, 24 September 2021, Science Advances. DOI: 10.1126/sciadv.abi4476 In addition to Gokcumen, Mu, Resendez and Saitou, the study’s authors included G. Ekin Atilla-Gokcumen and Apoorva Pradhan in the UB Department of Chemistry; Fuguo Wu in the UB Department of Ophthalmology; Natasha Lie and Nancy Hall at the Baylor College of Medicine; Qihui Zhu at The Jackson Laboratory for Genomic Medicine; Charles Lee at The Jackson Laboratory for Genomic Medicine and First Affiliated Hospital of Xi’an Jiaotong University; Laura Reinholdt and Gary Churchill at The Jackson Laboratory in Bar Harbor; Yoko Satta at SOKENDAI; Leo Speidel at University College London and the Francis Crick Institute; Shigeki Nakagome at Trinity College Dublin; and Neil Hanchard at the National Human Genome Research Institute. The research was supported by the U.S. National Science Foundation; the BrightFocus Foundation; the National Eye Institute and National Institute on Aging, both part of the U.S. National Institutes of Health; the Collaborative Learning and Integrated Mentoring in the Biosciences (CLIMB) program at UB; the Doris Duke Charitable Foundation; and the U.S. Department of Agriculture Agricultural Research Service; the First Affiliated Hospital of Xi’an Jiaotong University; and the Sir Henry Wellcome fellowship.
A comprehensive study by MoTrPAC has revealed that exercise induces widespread molecular changes across all studied organs in rats, suggesting complex biological processes that could inform personalized exercise regimens and treatments for conditions like non-alcoholic fatty liver disease. Credit: SciTechDaily.com Prolonged physical activity in rats results in profound changes to RNA, proteins, and metabolites in nearly all tissues, providing clues to many human health conditions. The health benefits of exercise are well known but new research shows that the body’s response to exercise is more complex and far-reaching than previously thought. In a study on rats, a team of scientists from across the United States found that physical activity causes many cellular and molecular changes in all 19 of the organs they studied in the animals. Exercise lowers the risk of many diseases, but scientists still don’t fully understand how exercise changes the body on a molecular level. Most studies have focused on a single organ, sex, or time point, and only include one or two data types. Comprehensive Molecular Analysis To take a more comprehensive look at the biology of exercise, scientists with the Molecular Transducers of Physical Activity Consortium (MoTrPAC) used an array of techniques in the lab to analyze molecular changes in rats as they were put through the paces of weeks of intense exercise. Their findings were published on May 1 in the journal Nature. The team studied a range of tissues from the animals, such as the heart, brain, and lungs. They found that each of the organs they looked at changed with exercise, helping the body to regulate the immune system, respond to stress, and control pathways connected to inflammatory liver disease, heart disease, and tissue injury. Potential Health Implications The data provide potential clues into many different human health conditions; for example, the researchers found a possible explanation for why the liver becomes less fatty during exercise, which could help in the development of new treatments for non-alcoholic fatty liver disease. The team hopes that their findings could one day be used to tailor exercise to an individual’s health status or to develop treatments that mimic the effects of physical activity for people who are unable to exercise. They have already started studies on people to track the molecular effects of exercise. Broader Research Collaboration Launched in 2016, MoTrPAC draws together scientists from the Broad Institute of MIT and Harvard, Stanford University, the National Institutes of Health, and other institutions to shed light on the biological processes that underlie the health benefits of exercise. The Broad project was originally conceived of by Steve Carr, senior director of Broad’s Proteomics Platform; Clary Clish, senior director of Broad’s Metabolomics Platform; Robert Gerszten, a senior associate member at the Broad and chief of cardiovascular medicine at Beth Israel Deaconess Medical Center; and Christopher Newgard, a professor of nutrition at Duke University. Co-first authors on the study include Pierre Jean-Beltran, a postdoctoral researcher in Carr’s group at Broad when the study began, as well as David Amar and Nicole Gay of Stanford. Courtney Dennis and Julian Avila, both researchers in Clish’s group, were also co-authors on the manuscript. “It took a village of scientists with distinct scientific backgrounds to generate and integrate the massive amount of high quality data produced,” said Carr, a co-senior author of the study. “This is the first whole-organism map looking at the effects of training in multiple different organs. The resource produced will be enormously valuable, and has already produced many potentially novel biological insights for further exploration.” The team has made all of the animal data available in an online public repository. Other scientists can use this site to download, for example, information about the proteins changing in abundance in the lungs of female rats after eight weeks of regular exercise on a treadmill, or the RNA response to exercise in all organs of male and female rats over time. Whole-Body Analysis Conducting such a large and detailed study required a lot of planning. “The amount of coordination that all of the labs involved in this study had to do was phenomenal,” said Clish. In partnership with Sue Bodine at the Carver College of Medicine at the University of Iowa, whose group collected tissue samples from animals after up to eight weeks of training, other members of the MoTrPAC team divided the samples up so that each lab — Carr’s team analyzing proteins, Clish’s studying metabolites, and others — would examine virtually identical samples. “A lot of large-scale studies only focus on one or two data types,” said Natalie Clark, a computational scientist in Carr’s group. “But here we have a breadth of many different experiments on the same tissues, and that’s given us a global overview of how all of these different molecular layers contribute to exercise response.” In all, the teams performed nearly 10,000 assays to make about 15 million measurements on blood and 18 solid tissues. They found that exercise impacted thousands of molecules, with the most extreme changes in the adrenal gland, which produces hormones that regulate many important processes such as immunity, metabolism, and blood pressure. The researchers uncovered sex differences in several organs, particularly related to the immune response over time. Most immune-signaling molecules unique to females showed changes in levels between one and two weeks of training, whereas those in males showed differences between four and eight weeks. Some responses were consistent across sexes and organs. For example, the researchers found that heat-shock proteins, which are produced by cells in response to stress, were regulated in the same ways across different tissues. But other insights were tissue-specific. To their surprise, Carr’s team found an increase in acetylation of mitochondrial proteins involved in energy production, and in a phosphorylation signal that regulates energy storage, both in the liver that changed during exercise. These changes could help the liver become less fatty and less prone to disease with exercise, and could give researchers a target for future treatments of non-alcoholic fatty liver disease. Novel Biological Insights “Even though the liver is not directly involved in exercise, it still undergoes changes that could improve health. No one speculated that we’d see these acetylation and phosphorylation changes in the liver after exercise training,” said Jean-Beltran. “This highlights why we deploy all of these different molecular modalities — exercise is a very complex process, and this is just the tip of the iceberg.” “Two or three generations of research associates matured on this consortium project and learned what it means to carefully design a study and process samples,” added Hasmik Keshishian, a senior group leader in Carr’s group and co-author of the study. “Now we are seeing the results of our work: biologically insightful findings that are yielding from the high quality data we and others have generated. That’s really fulfilling.” Other MoTrPAC papers published on May 1 include deeper dives into the response of fat and mitochondria in different tissues to exercise. Additional MoTrPAC studies are underway to study the effects of exercise on young adult and older rats, and the short-term effects of 30-minute bouts of physical activity. The consortium has also begun human studies, and are recruiting about 1,500 individuals of diverse ages, sexes, ancestries, and activity levels for a clinical trial to study the effects of both endurance and resistance exercise in children and adults. For more on this research, see Scientists Decode the Molecular Impact of Exercise. Reference: “Temporal dynamics of the multi-omic response to endurance exercise training” by MoTrPAC Study Group, Lead Analysts and MoTrPAC Study Group, 1 May 2024, Nature. DOI: 10.1038/s41586-023-06877-w This work was supported by the National Institutes of Health.
DVDV1551RTWW78V
Thailand pillow OEM manufacturer 》seamless coordination from idea to finished productInnovative insole ODM solutions in Vietnam 》helping your brand lead with innovation and integrityArch support insole OEM factory from Taiwan 》where modern manufacturing meets timeless quality
限會員,要發表迴響,請先登入

