Contents ...
udn網路城邦
Pillow ODM design company in Thailand 》ready to su
2025/05/02 16:25
瀏覽21
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Custom graphene foam processing China

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Innovative pillow ODM solution in Vietnam

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.ODM pillow for sleep brands Taiwan

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.ESG-compliant OEM manufacturer in Indonesia

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Vietnam custom neck pillow ODM

New images of the SIRT6 sirtuin enzyme—which regulates aging and other metabolic processes—help explain how it is able to access genetic material within the cell. This cryo-electron microscopy map shows the enzyme in complex with the nucleosome, a tightly packed complex of DNA and proteins called histones. Credit: Song Tan Lab, Penn State Penn State researchers have revealed how sirtuin enzymes interact with nucleosomes to regulate aging and metabolic processes. Their findings, using cryo-electron microscopy, may inform drug discovery efforts targeting sirtuins for biomedical applications. New scientific research provides insight into how an enzyme that helps regulate aging and other metabolic processes accesses our genetic material to modulate gene expression within the cell. A team led by Penn State researchers has produced images of a sirtuin enzyme bound to a nucleosome—a tightly packed complex of DNA and proteins called histones—showing how the enzyme navigates the nucleosome complex to access both DNA and histone proteins and clarifying how it functions in humans and other animals. A paper describing the results was published on April 14 in the journal Science Advances. Sirtuins are a type of enzyme found in organisms ranging from bacteria to humans that play important roles in aging, sensing DNA damage, and suppressing tumors in various cancers. Because of these varied roles, pharmaceutical companies are exploring their potential for biomedical applications. Much effort has focused on the ability of some sirtuins to decrease gene expression by removing a chemical flag from histone proteins. Nucleosomes in Gene Expression “In our cells, DNA is not naked like we see it in textbooks; it is spooled around proteins called histones within a large complex called the nucleosome,” said Song Tan, Verne M. Willaman Professor of Molecular Biology at Penn State and an author of the paper. “This packaging can also contribute signals for turning on or turning off genes: Adding an ‘acetyl’ chemical flag to the histone packaging material turns on a gene, while removing the acetyl flag turns the gene off. Sirtuins can silence gene activity by removing the acetyl flag from histones packaged into nucleosomes. Understanding how sirtuins interact with the nucleosome to remove this flag could inform future drug discovery efforts.” Previous studies have focused on how sirtuins interact with short segments of histones in isolation, in part because such histone “tail” peptides are much easier to work with in the lab. According to Tan, the nucleosome is a hundred times larger than typical histone peptides used in these studies and are consequently much more complicated to work with. “We have visualized a sirtuin enzyme called SIRT6 on its physiologically relevant substrate—the entire nucleosome,” said Jean-Paul Armache, assistant professor of biochemistry and molecular biology at Penn State and an author of the paper. “And we found that SIRT6 interacts with multiple parts of the nucleosome, not only the histone where the acetyl flag is to be modified.” Using a powerful type of imaging called cryo-electron microscopy with instruments at the Penn State Cryo-Electron Microscopy Facility, the National Cancer Institute, and the Pacific Northwest Cryo-EM Center, the researchers identified how SIRT6 positions itself on the nucleosome in order to remove an acetyl group from the K9 position on the histone called H3. Following up with biochemical experiments—in collaboration with the lab of Craig Peterson at the University of Massachusetts Chan Medical School—helped confirm their results. Arginine Anchor The researchers found that SIRT6 binds to the nucleosome using a type of connection called an “arginine anchor.” This type of binding—described by Tan’s lab in 2014—is used by a variety of proteins that target a particularly acidic patch on the nucleosome’s surface. In this case, a structural feature of SIRT6 called an extended loop nestles into a divot in the acidic patch, somewhat like a pipe sitting in a ditch. “The arginine anchor is a common paradigm for how many chromatin proteins interact with the nucleosome,” said Tan. “When we mutated the SIRT6 arginine anchor, the activity at the K9 position was severely affected, supporting a critical role for the SIRT6’s arginine anchor. Surprisingly, this mutation also impacted SIRT6’s enzymatic activity at a different position, K56, located much further away.” Instead of SIRT6 binding to the nucleosome in two different ways to access the two different histone positions, it is possible that SIRT6 binds to access K9 in a way that might also provide access to K56. “SIRT6 binds to a partially unwrapped nucleosome, with DNA displaced from the end of the nucleosome,” said Armache. “This exposes the K56 position, and it is possible that SIRT6 could essentially lean down to reach that position. We would like to validate this hypothesis in the future. We also hope to explore how SIRT6 works alongside other enzymes and to better understand its role in the response to DNA damage.” Reference: “Cryo-EM structure of the human Sirtuin 6–nucleosome complex” by Un Seng Chio, Othman Rechiche, Alysia R. Bryll, Jiang Zhu, Erik M. Leith, Jessica L. Feldman, Craig L. Peterson, Song Tan and Jean-Paul Armache, 14 April 2023, Science Advances. DOI: 10.1126/sciadv.adf7586 In addition to Tan, Armache, and Peterson, the research team at Penn State includes postdoctoral scholars Un Seng Chio, Othman Rechiche, and Jiang Zhu and graduate student Erik Leith. The research team at the UMass Chan Medical School also includes Alysia Bryll and Jessica Feldman. This research was supported by the U.S. National Institutes of Health and the Pennsylvania Department of Health using Tobacco CURE funds.

3D printed version of the endogenous Human Commander complex. Credit: Markku Varjosalo & Esa-Pekka Kumpula Researchers at the University of Helsinki have revealed the complex structure and interaction network of an essential cellular supercomplex called Commander. This breakthrough is expected to enhance our knowledge of inherited developmental disorders. Cellular communication depends on receptors located on the cell’s surface. The regular absorption and organization of these receptors, essential for either breaking them down or recycling them, are controlled by a complex system, with the Commander complex playing a key role. Research teams at the Institute of Biotechnology, University of Helsinki, led by Dr. Markku Varjosalo and Prof. Juha Huiskonen dissected the molecular interactions and atomic structure of this supercomplex, in its purest native form present in human cells. The study is published in Nature Structural and Molecular Biology. New avenues for potential therapeutic interventions in diseases The Commander complex’s three-dimensional arrangement and the extent of its interaction landscape have remained a mystery until now. The research team employed cryogenic electron microscopy to capture the structure, complemented by mass spectrometry to analyze complex interactions within cells. The analysis revealed mutations within the complex associated with developmental disorders. This research opens avenues for potential therapeutic interventions in diseases, such as the Ritscher-Schinzel syndrome, Alzheimer’s Disease, and viral infections like COVID-19, linked to the Commander complex. “With the combination of our techniques, we can truly start building a large-scale mechanistic picture of how these fundamental cellular machineries function in our bodies and what happens when things go wrong in them”, Dr. Esa-Pekka Kumpula, one of the study’s lead authors, emphasizes. “We saw first-hand that despite the advent of excellent predictive models, experimental evidence is still critical for determining the correct, biologically relevant structure”, he continues. Reference: “Structure and interactions of the endogenous human Commander complex” by Saara Laulumaa, Esa-Pekka Kumpula, Juha T. Huiskonen and Markku Varjosalo, 8 March 2024, Nature Structural & Molecular Biology. DOI: 10.1038/s41594-024-01246-1 The study was financially supported by the Research Council of Finland, Biocenter Finland, University of Helsinki, The Sigrid Juselius Foundation, The Emil Aaltonen Foundation, Instrumentarium Science Foundation, and the Cancer Foundation Finland.

Researchers from UT Health San Antonio discovered that certain immune cells, called invariant killer T (iNKT) cells, possess a unique homing property that directs them to the skin at birth, providing crucial protection and lifelong immunity. These skin-homing iNKT cells also promote hair follicle development and cooperate with commensal bacteria to maintain skin health and prevent pathogenic bacterial overgrowth. Infants Are Given Protection Against Bacteria That Cause Diseases Researchers from The University of Texas Health Science Center at San Antonio (UT Health San Antonio) have uncovered that certain immune cells possess a homing property that guides them to the skin of the newborn to provide protection. “These T cells home in on the skin like a guided missile,” said Na Xiong, Ph.D., professor of microbiology, immunology, and molecular genetics in the health science center’s Joe R. and Teresa Lozano Long School of Medicine. “They have a different homing property than other T cells. We identified the mechanism through which this homing activity occurs.” Localization of these T cells to the skin is important not only at birth but for lifelong immunity, said Xiong, senior author of an article that appeared on the cover of the February 2023 issue of Nature Immunology. In the womb, a mother’s defenses protect a fetus against bacteria. At birth, the skin and other tissues such as the gut are exposed to commensal bacteria. These are harmless bacteria that are beneficial by keeping any disease-causing bacteria in check. Programming and Function of iNKT Cells The skin-homing cells are called invariant killer T (iNKT) cells. These immune cells emanate from and are programmed in an organ called the thymus. In humans, this organ is located between the lungs. The iNKT cells cooperate with the commensal bacteria to preserve skin health and act as a barrier for the body against bacterial pathogens, Xiong said. “We found that if the iNKT cells do not properly go to the skin, or if there is no such population in the skin, there will be dysregulation of commensal bacteria in the skin and the bacterial composition will be changed,” Xiong said. “This can result in not enough friendly bacteria being present, enabling potentially pathogenic bacteria to overgrow.” In a second important finding, the researchers observed that the skin-homing iNKT cells help promote hair follicle development. The cells situate preferentially around follicles and are not the only ones present there, Xiong said. “Within the hair follicle, there are also a lot of commensal bacteria. It is one place they like to stay,” he said. The follicles themselves are critical sites of immune defense, he added. Reference: “Developmentally programmed early-age skin localization of iNKT cells supports local tissue development and homeostasis” by Wei-Bei Wang, Yang-Ding Lin, Luming Zhao, Chang Liao, Yang Zhang, Micha Davila, Jasmine Sun, Yidong Chen and Na Xiong, 9 January 2023, Nature Immunology. DOI: 10.1038/s41590-022-01399-5 Collaborators are from Pennsylvania State University. The study was funded by the National Institute of Allergy and Infectious Diseases and the National Institute of Arthritis, Musculoskeletal, and Skin Diseases of the National Institutes of Health.

DVDV1551RTWW78V



Thailand anti-bacterial pillow ODM design 》long-term production solutions with flexible volumeChina ODM expert for comfort products 》driving your product success through every stage of manufacturingIndonesia neck support pillow OEM 》where quality, comfort, and credibility come together

限會員,要發表迴響,請先登入