Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Thailand flexible graphene product manufacturing
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Ergonomic insole ODM support Vietnam
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Eco-friendly pillow OEM manufacturer Taiwan
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Vietnam custom neck pillow ODM
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Flexible manufacturing OEM & ODM Taiwan
Scientists have discovered a mechanism to prevent darkening and health risks in cold-stored potatoes, a breakthrough promising healthier, tastier snacks and addressing a billion-dollar market’s challenges. Their work, revealing a gene responsible for cold-induced sweetening (CIS), could lead to new potato varieties that avoid acrylamide formation, benefiting the snack food industry and potentially reducing food waste and costs. Researchers at Michigan State University have discovered a method to decrease the levels of a carcinogen generated during the frying of tubers that have been stored in cold conditions. In a breakthrough for the snack food industry, a team of scientists led by Michigan State University professors Jiming Jiang and David Douches has discovered a key mechanism behind the darkening and potential health concerns associated with cold-stored potatoes. Their findings, published in the journal The Plant Cell, hold promise for the development of potato varieties that could be stored under cold temperatures and lead to healthier and tastier chips and fries. These snacks have a market worth billions of dollars in the U.S. In Michigan — the nation’s leading producer of potatoes for chips — the potato industry is valued at $240 million annually. Michigan State University researchers David Douches (left) and Jiming Jiang (right) work with potato plants in Michigan State University’s Agronomy Farm Greenhouse. Credit: Paul Henderson/MSU But farmers can’t grow the crops year-round and snack makers need a constant supply of fresh spuds to meet their demands. Preserving potatoes in cold storage ensures chip and fry producers have what they need, but the low temperatures also trigger a process called cold-induced sweetening, or CIS, which converts starches to sugars. Processing tubers loaded with sugars results in darkened fries and chips. It also generates acrylamide, a carcinogenic compound formed during high-temperature processing, which has been linked to health concerns including an increased cancer risk. Although there are techniques to reduce sugars in cold-stored tubers, these add cost and can affect the flavor of the final product. So Jiang and his colleagues have focused on the root of the problem to work toward potatoes that aren’t affected by CIS, to begin with. “We’ve identified the specific gene responsible for CIS and, more importantly, we’ve uncovered the regulatory element that switches it on under cold temperatures,” explained Jiang, an MSU Research Foundation Professor in the departments of Plant Biology and Horticulture. “By studying how this gene turns on and off, we open up the possibility of developing potatoes that are naturally resistant to CIS and, therefore, will not produce toxic compounds.” By switching off the potato vacuolar invertase gene, or VInv, Michigan State University researchers have shown that frying potatoes stored at cold temperatures can result in a healthier and more appealing chip. Credit: Adapted from Bhaskar, P.B., et al. Plant Physiology, 2010, 154 (2), 939–948, https://doi.org/10.1104/pp.110.162545 From lab, to greenhouse, to chip bag Jiang, a potato researcher for over 20 years, has dedicated his career to solving this puzzle. To overcome one of the most pressing issues in the potato industry, Jiang started his work to minimize acrylamide in potato chips and fries at the University of Wisconsin-Madison. There, Jiang and his team published a paper in 2010 identifying a key gene responsible for potato CIS. Moving to MSU in 2017, Jiang and his team have worked to pinpoint which elements of that gene could be modified to stop the process of cold-induced sweetening. Jiang’s research team, which includes collaborators across MSU’s campus as well as at other research universities, used a combination of gene expression analysis, protein identification, and enhancer mapping to pinpoint the regulatory element controlling the CIS gene. “MSU’s collaborative research environment and facilities, including the world-class potato breeding program led by Dave Douches, were instrumental for this research,” Jiang said. “Our next steps involve using this knowledge to create CIS-resistant potato lines through gene editing or other breeding techniques in Dr. Douches’ greenhouses.” Researchers are growing healthier, more snackable potatoes in Michigan State University’s Agronomy Farm Greenhouse. Credit: Paul Henderson/MSU The lead of the MSU Potato Breeding and Genetics Program, Douches put into practice a technique Jiang developed to stop CIS through gene editing. “All our facilities are on campus so the research work can be done efficiently,” Douches said. “With our collaboration, we were able to produce a finding that paves the way for targeted genetic modification approaches to create cold-resistant potato varieties.” The potential benefits of this research extend beyond improved snack food quality. Reducing acrylamide formation in potatoes could have implications for other processed starchy foods. Additionally, cold-resistant potatoes could offer greater flexibility in storage and transportation, potentially reducing food waste and costs. Jiang believes the new CIS-resistant potatoes could be commercially available in the near future. “This discovery represents a significant advancement in our understanding of potato development and its implications for food quality and health,” Jiang said. “It has the potential to affect every single bag of potato chips around the world.” Reference: “Molecular dissection of an intronic enhancer governing cold-induced expression of the vacuolar invertase gene in potato” by Xiaobiao Zhu, Airu Chen, Nathaniel M Butler, Zixian Zeng, Haoyang Xin, Lixia Wang, Zhaoyan Lv, Dani Eshel, David S Douches and Jiming Jiang, 20 February 2024, The Plant Cell. DOI: 10.1093/plcell/koae050
Rochester researchers used fruit flies as model organisms to study Segregator Distorter (SD), a selfish genetic element that skews the rules of fair genetic transmission. Credit: University of Rochester photo / J. Adam Fenster Biologists from University of Rochester used population genomics to study a selfish ‘supergene’ that skews genetic inheritance. “Selfish genetic elements” litter the human genome. They do not seem to benefit their hosts but instead seek only to propagate themselves. These selfish genetic elements can wreak havoc. For example, they can distort sex ratios, impair fertility, cause harmful mutations, and even potentially cause population extinction. Biologists have for the first time used population genomics to shed light on the evolution and consequences of a selfish genetic element known as Segregation Distorter (SD). These researchers at the University of Rochester, include Amanda Larracuente, an associate professor of biology, and Daven Presgraves, a University Dean’s Professor of Biology. In a paper published recently in the journal eLife, the scientists report that SD has caused dramatic changes in chromosome organization and genetic diversity. A Genome-Sequencing First The scientists used fruit flies as model organisms to study SD, a selfish genetic element that skews the rules of fair genetic transmission. Fruit flies actually share about 70 percent of the same genes that cause human diseases, and because they have such short reproductive cycles—less than two weeks—researchers are able to create generations of the flies in a relatively short amount of time. As expected under Mendel’s laws of inheritance, female flies transmit SD-infected chromosomes to about 50 percent of their offspring. However, males transmit SD chromosomes to nearly 100 percent of their offspring, because SD kills any sperm that do not carry the selfish genetic element. How does SD do this? Because it has evolved into what researchers refer to as a “supergene”—a cluster of selfish genes on the same chromosome that are inherited together. Scientists have known for decades that SD evolved to form a supergene. But this is the first time they have used what is known as population genomics—examining genome-wide patterns of DNA sequence variations among individuals in a population—to study the dynamics, evolution, and long-term effects of SD on a genome’s evolution. “This is the first time anyone has sequenced the whole genomes of SD chromosomes and therefore been able to make inferences about both the history and the genomic consequences of being a supergene,” Presgraves says. An Evolutionary Downfall on the Horizon The advantage of being a supergene is that multiple genes can act together to cause SD’s near-perfect transmission to offspring. As the researchers found, however, there are major drawbacks to being a supergene. In sexual reproduction, chromosomes from the mother and the father swap genetic material to produce new genetic combinations unique to each offspring. In most cases, the chromosomes line up properly and crossover. Scientists have long recognized that the exchange of genetic material by crossing over—known as recombination—is vital because it empowers natural selection to eliminate deleterious mutations and enable the spread of beneficial mutations. As the researchers showed, however, one of the major costs of SD’s near-perfect transmission is that it does not undergo recombination. The selfish genetic element gains a short-term transmission advantage by shutting down recombination to ensure it gets passed on to all of its offspring. But SD is not forward-looking: preventing recombination has led to SD accumulating many more deleterious mutations compared to normal chromosomes. “Without recombination, natural selection can’t purge deleterious mutations effectively, so they can accumulate on SD chromosomes,” Larracuente says. “These mutations might be ones that disrupt the function or regulation of genes.” The lack of recombination may also lead to SD’s evolutionary downfall, Presgraves says. “Due to their lack of recombination, SD chromosomes have begun to show signs of evolutionary degeneration.” Reference: “Epistatic selection on a selfish Segregation Distorter supergene – drive, recombination, and genetic load” by Beatriz Navarro-Dominguez, Ching-Ho Chang, Cara L Brand, Christina A Muirhead, Daven C Presgraves and Amanda M Larracuente, 29 April 2022, eLife. DOI: 10.7554/eLife.78981
New research has uncovered significant age-related changes in lipid metabolism across different organs and sexes in mice, highlighting the accumulation of specific lipids produced by gut bacteria. The findings, which also include the identification of a gene causing sex differences in the kidneys, could improve our understanding of age-related diseases like Alzheimer’s and atherosclerosis. This research provides a foundation for future studies on the human lipidome and microbiome, potentially leading to targeted treatments for these conditions. Credit: RIKEN RIKEN Center researchers have found key age-related changes in mice’s lipid metabolism, potentially improving treatments for age-related diseases. Researchers at the RIKEN Center for Integrative Medical Sciences (IMS) have identified multiple age-related alterations in lipid metabolism in mice, affecting various organs and differing by sex. Notably, they observed a systemic accumulation of specific lipids originating from gut bacteria as the mice aged. Additionally, the study revealed a sex-related difference in the kidneys and identified a gene linked to this variation. Published in Nature Aging, these findings could enhance our understanding of chronic age-related diseases such as Alzheimer’s, atherosclerosis, kidney disease, and cancer. Lipids, often in the form of fats or oils, are essential molecules for storing energy in our bodies, among other things. In addition, lipids act as signaling molecules and as components of cell membranes. Metabolism—the breakdown of biomolecules such as lipids and sugars into their component parts—slows down as we age, which helps explain why it’s easier to gain weight, and more difficult to lose it, as we get older. Although this has been known for over 50 years, how changes in lipid metabolism in particular affects lifespan and health remain unclear. In their recent study, Hiroshi Tsugawa and his team at RIKEN IMS reasoned that before this question can be fully answered, we need to know what the actual changes are, in great detail. Only then can scientists begin looking for links between aging lipid metabolism and human health. Toward this end, they used mice to develop an atlas of age-related changes in lipid metabolites. By using a cutting-edge technique to take multiple snapshots of the mouse lipidome—all lipid metabolites present in a biological sample—the researchers found that BMP-type lipids increased with age in the kidneys, liver, lungs, muscles, spleen, and small intestine of the mice. These lipids play key roles in cholesterol transport and the breakdown of biomolecules within cellular recycling centers called lysosomes. Age-related lysosomal damage might result in cells making more BMPs, which could lead to further metabolic changes, such as increasing cholesterol derivatives in the kidney. Gut Bacteria and Lipid Changes The researchers also investigated the impact of gut bacteria on the lipidome, discovering that while gut bacteria produced many structurally unique lipids, only sulfonolipids increased with age in the liver, kidney, and spleen. In fact, no other group of lipid metabolites from gut bacteria were even detected in these peripheral tissues. “As this kind of lipid is known to be involved in regulating immune responses, the next phase of our research will involve testing the gut bacteria-derived sulfonolipids to determine their structure and physiological functions,” says Tsugawa. The researchers also found age-related sex differences in the mouse lipidome, particularly in the kidneys, with levels of the lipid metabolite galactosylceramide being higher in older male mice than in older females. This discrepancy was attributed to increased expression of the UGT8 gene in male mice. Understanding sex-specific metabolic differences like this could shed light on susceptibility to age-related diseases in humans. “Our research has comprehensively characterized the changes in the lipidome that occur in the mouse with aging. In doing so, we have created at atlas that will serve as an important global resource,” says Tsugawa. “Next, we must extend this type of study to the human lipidome and microbiome.” The findings highlight the importance of understanding how lipid metabolism changes as we age, and the potential of targeting the lipidome when designing treatments for age-related diseases. Reference: “A lipidome landscape of aging in mice” by Hiroshi Tsugawa, Tomoaki Ishihara, Kota Ogasa, Seigo Iwanami, Aya Hori, Mikiko Takahashi, Yutaka Yamada, Naoko Satoh-Takayama, Hiroshi Ohno, Aki Minoda and Makoto Arita, 12 April 2024, Nature Aging. DOI: 10.1038/s43587-024-00610-6
DVDV1551RTWW78V
China OEM/ODM hybrid insole services 》designed for quality-conscious brands who care about user experienceTaiwan sustainable material ODM production base 》committed to helping you create value through custom manufacturingVietnam orthopedic insole OEM manufacturer 》small batch friendly, big on consistency
下一則: China insole OEM manufacturer 》empowering your pro
- Taiwan ergonomic pillow OEM supplier 》where crafts
- Vietnam orthopedic insole OEM manufacturer 》ready
- China insole OEM manufacturer 》empowering your pro
- Arch support insole OEM factory from Taiwan 》commi
- Taiwan OEM factory for footwear and bedding 》small
- Indonesia ODM expert for comfort products 》where q
限會員,要發表迴響,請先登入

