Contents ...
udn網路城邦
Vietnam neck support pillow OEM 》offering full-ser
2025/04/29 05:37
瀏覽27
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Indonesia neck support pillow OEM

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Cushion insole OEM solution Vietnam

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Graphene insole OEM factory China

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Vietnam foot care insole ODM expert

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Orthopedic pillow OEM solutions Vietnam

Researchers from the Salk Institute, in a global collaboration, have produced a detailed atlas of human brain cells by analyzing over half a million cells. The study, part of the NIH’s BRAIN Initiative, marks a pivotal shift in understanding brain cell diversity and function. The new research, part of the NIH BRAIN Initiative, paves the way toward treating, preventing, and curing brain disorders. Salk Institute researchers, as part of a larger collaboration with research teams around the world, analyzed more than half a million brain cells from three human brains to assemble an atlas of hundreds of cell types that make up a human brain in unprecedented detail. The research, published in a special issue of the journal Science on October 13, 2023, is the first time that techniques to identify brain cell subtypes originally developed and applied in mice have been applied to human brains. “These papers represent the first tests of whether these approaches can work in human brain samples, and we were excited at just how well they translated,” says Professor Joseph Ecker, director of Salk’s Genomic Analysis Laboratory and a Howard Hughes Medical Institute investigator. “This is really the beginning of a new era in brain science, where we will be able to better understand how brains develop, age, and are affected by disease.” The BRAIN Initiative and Brain Cell Diversity The new work is part of the National Institute of Health’s Brain Research Through Advancing Innovative Neurotechnologies Initiative, or The BRAIN Initiative, an effort launched in 2014 to describe the full plethora of cells—as characterized by many different techniques—in mammalian brains. Salk is one of three institutions awarded grants to act as central players in generating data for the NIH BRAIN Initiative Cell Census Network, BICCN. An abstract representation of cell diversity in the brain. Individual nuclei are colored in the bright hues of t-SNE plots used in epigenomics analysis to distinguish individual brain cell types. Layers of background color represent the local environmental factors of each brain region that influence cell function. Credit: Michael Nunn Every cell in a human brain contains the same sequence of DNA, but in different cell types different genes are copied onto strands of RNA for use as protein blueprints. This ultimate variation in which proteins are found in which cells—and at what levels—allows the vast diversity in types of brain cells and the complexity of the brain. Knowing which cells rely on which DNA sequences to function is critical not only to understanding how the brain works, but also how mutations in DNA can cause brain disorders and, relatedly, how to treat those disorders. “Once we scale up our techniques to a large number of brains, we can start to tackle questions that we haven’t been able to in the past,” says Margarita Behrens, a research professor in Salk’s Computational Neurobiology Laboratory and a co-principal investigator of the new work. From Mice to Men: Adapting Research Techniques In 2020, Ecker and Behrens led the Salk team that profiled 161 types of cells in the mouse brain, based on methyl chemical markers along DNA that specify when genes are turned on or off. This kind of DNA regulation, called methylation, is one level of cellular identity. In the new paper, the researchers used the same tools to determine the methylation patterns of DNA in more than 500,000 brain cells from 46 regions in the brains of three healthy adult male organ donors. While mouse brains are largely the same from animal to animal, and contain about 80 million neurons, human brains vary much more and contain about 80 billion neurons. “It’s a big jump from mice to humans and also introduces some technical challenges that we had to overcome,” says Behrens. “But we were able to adapt things that we had figured out in mice and still get very high quality results with human brains.” Innovative Techniques and Collaborative Efforts At the same time, the researchers also used a second technique, which analyzed the three-dimensional structure of DNA molecules in each cell to get additional information about what DNA sequences are being actively used. Areas of DNA that are exposed are more likely to be accessed by cells than stretches of DNA that are tightly folded up. “This is the first time we’ve looked at these dynamic genome structures at a whole new level of cell type granularity in the brain, and how those structures may regulate which genes are active in which cell types,” says Jingtian Zhou, co-first author of the new paper and a postdoctoral researcher in Ecker’s lab. Other research teams whose work is also published in the special issue of Science used cells from the same three human brains to test their own cell profiling techniques, including a group at UC San Diego led by Bing Ren—also a co-author in Ecker and Behrens’ study. Ren’s team revealed a link between specific brain cell types and neuropsychiatric disorders, including schizophrenia, bipolar disorder, Alzheimer’s disease, and major depression. Additionally, the team developed artificial intelligence deep learning models that predict risk for these disorders. A diagram demonstrating how “barCodes” (“scMCodes”) can be used to identify and classify cell types in the brain. The image shows an anatomical brain cross section, an abstraction of the brain with regions represented as colored circles (blue, red, green, and yellow), and a barcode to represent the technique used by the scientists. Credit: Salk Institute Other groups in the global collaboration focused on measuring levels of RNA to group cells together into subtypes. The groups found a high level of correspondence in each brain region between which genes were activated, based on the DNA studies by Ecker and Behrens’ team, and which genes were found to be transcribed into RNA. The Road Ahead: More Discoveries Await Since the new Salk research was intended as a pilot study to test the efficacy of the techniques in human brains, the researchers say they can’t yet draw conclusions about how many cell types they might uncover in the human brain or how those types differ between mice and humans. “The potential to find unique cell types in humans that we don’t see in mice is really exciting,” says Wei Tian, co-first author of the new paper and a staff scientist in Ecker’s lab. “We’ve made amazing progress but there are always more questions to ask.” In 2022, the NIH Brain Initiative launched a new BRAIN Initiative Cell Atlas Network (BICAN), which will follow up the BICCN efforts. At Salk, a new Center for Multiomic Human Brain Cell Atlas funded through BICAN aims to study cells from over a dozen human brains and ask questions about how the brain changes during development, over people’s lifespans, and with disease. That more detailed work on a larger number of brains, Ecker says, will pave the way toward a better understanding of how certain brain cell types go awry in brain disorders and diseases. “We want to have a full understanding of the brain across the lifespan so that we can pinpoint exactly when, how, and in which cell types things go wrong with disease—and potentially prevent or reverse those harmful changes,” says Ecker. Reference: “Single-cell DNA methylation and 3D genome architecture in the human brain” by Wei Tian, Jingtian Zhou, Anna Bartlett, Qiurui Zeng, Hanqing Liu, Rosa G. Castanon, Mia Kenworthy, Jordan Altshul, Cynthia Valadon, Andrew Aldridge, Joseph R. Nery, Huaming Chen, Jiaying Xu, Nicholas D. Johnson, Jacinta Lucero, Julia K. Osteen, Nora Emerson, Jon Rink, Jasper Lee, Yang E. Li, Kimberly Siletti, Michelle Liem, Naomi Claffey, Carolyn O’Connor, Anna Marie Yanny, Julie Nyhus, Nick Dee, Tamara Casper, Nadiya Shapovalova, Daniel Hirschstein, Song-Lin Ding, Rebecca Hodge, Boaz P. Levi, C. Dirk Keene, Sten Linnarsson, Ed Lein, Bing Ren, M. Margarita Behrens and Joseph R. Ecker, 13 October 2023, Science. DOI: 10.1126/science.adf5357 Other authors of the paper are Anna Bartlett, Qiurui Zeng, Hanqing Liu, Rosa G. Castanon, Mia Kenworthy, Jordan Altshul, Cynthia Valadon, Andrew Aldridge, Joseph R. Nery, Huaming Chen, Jiaying Xu, Nicholas D. Johnson, Jacinta Lucero, Julia K. Osteen, Nora Emerson, Jon Rink, Jasper Lee, Michelle Liem, Naomi Claffey and Caz O’Connor of Salk; Yang Li and Bing Ren of the Ludwig Institute for Cancer Research at UC San Diego; Kimberly Siletti and Sten Linnarsson of the Karolinska Institutet; Anna Marie Yanny, Julie Nyhus, Nick Dee, Tamara Casper, Nadiya Shapovalova, Daniel Hirschstein, Rebecca Hodge, Boaz P. Levi and Ed Lein of the Allen Institute for Brain Science; and C. Dirk Keene of the University of Washington. The work was supported by grants from the National Institute of Mental Health (U01MH121282, UM1 MH130994, NIMH U01MH114812), the National Institutes of Health BRAIN Initiative (NCI CCSG: P30 014195),  the Nancy and Buster Alvord Endowment, and the Howard Hughes Medical Institute.

Computer-rendered image showing T cells (red) interacting with monocytes (yellow) and dendritic cells (blue) in the tumor microenvironment. These interactions help T cells to fully mature and effectively target and kill cancer cells. The scale bar (white) represents 10 micrometers (µm), indicating the size of the tumor regions shown. Credit: IMP Recent advances in immunotherapy research have revealed crucial roles for new immune cells in combating cancer, leading to potential strategies to enhance treatment efficacy and overcome resistance. Immunotherapy has transformed cancer treatment, providing new hope for cancers once deemed incurable by harnessing the immune system to fight the disease. However, many cancers can evade immune attacks, leading to resistance against these treatments. Researchers led by Anna Obenauf at the IMP have identified a critical role for inflammatory monocytes—an immune cell type—in reactivating T cells to attack cancer cells within tumors. Published in Nature, these findings position monocytes as a promising target to enhance immunotherapy, with the potential to benefit patients battling cancers such as melanoma, lung, pancreatic, and colorectal cancer. The Evolution of Immunotherapy Over the past few decades, immunotherapy has revolutionized cancer treatment, providing effective options for diseases once thought to be untreatable, including melanoma, lung cancer, and bladder cancer. What began as experimental research in laboratories has now transitioned into life-changing clinical applications, offering new hope for patients with difficult-to-treat conditions. How Immunotherapy Works Immunotherapy works by utilizing the body’s immune system to target and destroy cancer cells. This is achieved either by broadly boosting immune activity or by focusing on specific pathways that help the immune system recognize, attack, and eliminate cancer cells. Despite its significant advancements, immunotherapy still faces major challenges. A key obstacle is cancer’s ability to evade the immune system by altering its cells to escape detection and creating an immune-suppressive environment within the tumor. As a result, many patients do not respond to current treatments—for instance, more than 50% of those diagnosed with melanoma, the most aggressive type of skin cancer, see limited or no benefit. Advanced Research in Cancer Immunotherapy Much of how cancer evades the immune response remains unknown, largely due to the complex cascade of molecular events in the interactions between cancer and immune cells. Understanding the nuances of these processes will be key to developing more effective therapies. In a study led by Anna Obenauf, Senior Group Leader at the IMP, an international team of researchers integrated cutting-edge tools, including melanoma mouse models, single-cell RNA sequencing, and advanced functional genetics and imaging technologies, to push the boundaries of our understanding of the immune system’s role in fighting cancer. The study, now published in the journal Nature, reveals an additional type of immune cell involved in stimulating the immune response against cancer, opening up possibilities for new strategies to boost immunotherapy and potentially expand its benefits to more patients. Rethinking the Cancer Immunity Cycle Researchers studying the body’s antitumor defenses often refer to the ‘cancer immunity cycle’—a series of steps through which immune cells recognize and eliminate cancer cells. At the core of this cycle are T cells, the immune system’s primary cancer-fighting cells. But T cells do not work alone; they rely on activation from other immune cells, particularly antigen-presenting cells (APCs) such as dendritic cells–the main T cell activators. The process begins when cancer cells release protein fragments, or antigens, that are captured by APCs. These cells present the antigens to T cells, effectively ‘priming’ them to recognize cancer cells as targets. Once activated in the lymph nodes, T cells travel to the tumor site to destroy it, releasing new antigens that restart the cycle of immune activation. “The cancer immunity cycle, as we understand it today, is actually incomplete—we’re missing the crucial step of T cell reactivation within the tumor microenvironment,” says Anais Elewaut, co-first author of the study and a student in the Vienna BioCenter PhD Program. “We discovered that when T cells reach the tumor, they still need additional activation from other immune cells to be fully effective.” Novel Findings and Future Directions To identify the missing components in this process, the scientists used powerful cell models to investigate the factors that make cancer susceptible to the most common immunotherapies. Two melanoma cell line models derived from mice that respond differently to commonly used therapies were generated at the Obenauf lab: one that responds well to both immunotherapy and targeted therapy, which applies substances aimed at specific cancer cells; the other resistant to both these treatment types. “With this system, we could closely compare responsive to resistant tumors, helping us figure out the key factors that determine whether a treatment will succeed or fail.” Monocytes: A New Player in Cancer Immunity The team first analyzed the tumor environment in both models by profiling gene expression at the level of single cells, and then sorted and quantified immune cell types based on specific markers on their surface. “We were very interested when we noticed lots of monocytes in responsive tumors compared to resistant ones. Monocytes are a type of immune cell never reported to play a role in T cell stimulation,” explains Elewaut. For the longest time, researchers had been looking at dendritic cells as the main activators of T cells, overlooking the role of other immune cells. In contrast, the resistant model had few monocytes, but was filled with suppressive macrophages, which are known to inhibit immune responses.   “Monocytes were thought to play a limited role in cancer immunity,” explains Guillem Estivill, co-first author of the study and a student in the Vienna BioCenter PhD Program. “Now we show how the presence or absence of these specific immune cells can lead to very different treatment outcomes.” Whereas dendritic cells are critical for kickstarting the cancer immunity cycle in the lymph node, both dendritic cells and monocytes are needed to fully activate T cells in the tumor. The scientists found that monocytes can directly ‘borrow’ parts of cancer cells, including antigens, and present them to T cells. This process, called ‘cross-dressing’, allows monocytes to reactivate T cells, which boosts their function in recognizing and attacking cancer cells. Diagram showing how inflammatory monocytes help reactivate T cells, and how the molecules PGE2 and IFN-I work together to create an inflammatory tumour environment, support T cell activation, and immunotherapy response. Credit: IMP Restoring Immune Balance Against Cancer The study also shows how cancer cells evade immunity by making it harder for T cells to stay activated and perform effectively. Cancer cells increase production of the molecule prostaglandin E2, which blocks the action of both monocytes and dendritic cells. Simultaneously, cancer cells decrease the production of interferons—molecules that stimulate immune activity— thereby further weakening the immune system’s ability to fight the tumor. “We’ve seen that restoring the levels of these molecules brings T cells back to their cancer-killing action through the activation of monocytes,” explains Estivill. Building on this discovery, one promising strategy will be to use COX inhibitors, such as aspirin—drugs that block the cyclooxygenase (COX) enzyme, which is responsible for producing molecules that cause inflammation such as prostaglandin E2. Additionally, stimulating interferon production could enhance the immune system’s ability to combat cancer. These approaches could be combined with existing immunotherapies, providing new tools against cancers that are currently resistant to treatment. The findings make monocytes promising targets to boost immunotherapies, with insights that have the potential to benefit a wide range of patients affected by cancers with similar molecular pathways to melanoma. These include lung, pancreatic, and colorectal cancer. Future Directions in Immunotherapy Future research will focus on exploring how stimulating T cells with monocytes and other immune cells plays out in different forms of immunotherapy. This knowledge could reveal new ways to overcome resistance to immunotherapies. “Clinical trials combining COX inhibitors and immunotherapy are on the horizon. And we already identified strategies to enhance their effectiveness,” says Anna Obenauf. “Our goal is to deepen the mechanistic understanding of anti-tumor immunity. I hope this will help us overcome resistance in more patients, making cancer immunotherapy a viable option for a broader range of patients.” Reference: “Cancer cells impair monocyte-mediated T cell stimulation to evade immunity” by Anais Elewaut, Guillem Estivill, Felix Bayerl, Leticia Castillon, Maria Novatchkova, Elisabeth Pottendorfer, Lisa Hoffmann-Haas, Martin Schönlein, Trung Viet Nguyen, Martin Lauss, Francesco Andreatta, Milica Vulin, Izabela Krecioch, Jonas Bayerl, Anna-Marie Pedde, Naomi Fabre, Felix Holstein, Shona M. Cronin, Sarah Rieser, Denarda Dangaj Laniti, David Barras, George Coukos, Camelia Quek, Xinyu Bai, Miquel Muñoz i Ordoño, Thomas Wiesner, Johannes Zuber, Göran Jönsson, Jan P. Böttcher, Sakari Vanharanta and Anna C. Obenauf, 27 November 2024, Nature. DOI: 10.1038/s41586-024-08257-4 Guillem Estivill is a PhD student in Anna Obenauf’s lab at the IMP and a member of the EVOMET network, a renowned European consortium dedicated to studying the evolution of cancer metastasis. Supported by the European Commission’s Innovative Training Networks program under the Marie Skłodowska-Curie Actions, EVOMET is coordinated by the Institute for Research in Biomedicine (IRB) Barcelona and includes thirteen leading academic, clinical, and industrial institutions. This collaborative initiative trains early-career researchers in metastasis biology and therapeutic development. By promoting interdisciplinary and cross-sector collaboration, EVOMET aims to fast-track the development of targeted therapies and improve treatments for metastatic cancer.

Greater mouse-eared bats. Scientists have discovered the first case of acoustic Batesian mimicry in mammals: greater mouse-eared bats imitate the buzzing sound of a stinging insect to deter predatory owls from eating them. Greater mouse-eared bats mimic insect buzzes to deter owls, showing the first case of acoustic mimicry in mammals. In Batesian mimicry, a harmless species imitates a more dangerous one in an evolutionary “ruse” that protects the mimic from would-be predators. Now, researchers reporting today (May 9, 2022) in the journal Current Biology have discovered the first case of acoustic Batesian mimicry in mammals and one of very few documented in any species: greater mouse-eared bats imitate the buzzing sound of a stinging insect to discourage predatory owls from eating them. “In Batesian mimicry, a non-armed species imitates an armed one to deter predators,” said Danilo Russo of Università degli Studi di Napoli Federico II in Portici, Italy. “Imagine a bat that has been seized but not killed by the predator. Buzzing might deceive the predator for a fraction of a second—enough to fly away.” Greater Mouse-Eared Bats Imitate Stinging Insects Russo made the discovery while conducting field research in which he frequently caught the bats in mist-netting operations. “When we handled the bats to take them out of the net or process them, they invariably buzzed like wasps,” Russo says. The greater mouse-eared bat (Myotis myotis). Credit: Marco Scalisi They recognized the buzzing as some sort of unusual distress call. They thought there might be different reasons the bats made the sound. Perhaps it could send a warning to others of its species or deter predators. Russo and team put the idea aside and continued along with other research questions. Years later, they decided it was time to design a careful experiment to test their ideas about that buzzing.  In their studies, they first looked at the acoustic similarity between buzzing sounds of the bats and stinging social hymenopteran insects. Next, they played those sounds back to captive owls to see how they would react. Hornet (Vespa crabro) that emits a defensive “distress” buzz. Credit: Michelina Pusceddu How Owls React to Mimicry Buzzes Different owls reacted in variable ways, likely depending on their prior experiences. Nevertheless, they consistently reacted to insect and bat buzzes by moving farther away from the speaker. In contrast, the sound of potential prey got them to move closer. The researchers say the findings provide the first example of interspecific mimicry between mammals and insects as well as one of few examples of acoustic mimicry. Interestingly, their analysis of the sounds revealed that the similarity between buzzes broadcast by hornets and bats was most evident only once acoustic parameters that the owls can’t hear were excluded from the analysis. In other words, Russo explains, the buzzing sounds are even more similar when heard the way owls hear them. Barn owl (Tyto alba). Credit: Maurizio Fraissinet Do owls avoid that buzzing sound because they’ve been stung before? Russo says that stinging insects likely do sting owls, but they don’t have the data to prove it. There is other evidence that birds avoid such potentially noxious insects, however. For example, when hornets move into nest boxes or tree cavities, birds in general won’t even explore them and they certainly don’t nest there. Exploring the Relationship Between Owls, Bats, and Insects Because the three study species in question all share many of the same spaces, such as buildings, rock crevices, or caves, there is likely to be plenty of opportunity for them to interact, according to the researchers. Even so, they find this intricate relationship among distantly related species intriguing. “It is somewhat surprising that owls represent the evolutionary pressure shaping acoustic behavior in bats in response to unpleasant experiences owls have with stinging insects,” says Russo. “It is just one of the endless examples of the beauty of evolutionary processes!” Russo notes that there are many other vertebrate species that also buzz when disturbed and hundreds of bat species, some of which may use similar strategies. They hope to look for these interesting dynamics within other interacting groups in future studies. Reference: “Bats mimic hymenopteran insect sounds to deter predators” by Leonardo Ancillotto, Donatella Pafundi, Federico Cappa, Gloriana Chaverri, Marco Gamba, Rita Cervo and Danilo Russo, 9 May 2022, Current Biology. DOI: 10.1016/j.cub.2022.03.052

DVDV1551RTWW78V



ODM pillow factory in China 》manufacturing with a focus on sustainability and comfortInnovative insole ODM solutions factory in Taiwan 》performance-first thinking from development to deliveryHigh-performance insole OEM Taiwan 》offering full-service support from design to delivery

限會員,要發表迴響,請先登入