Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Ergonomic insole ODM support Taiwan
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Innovative insole ODM solutions in Taiwan
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.High-performance insole OEM Indonesia
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Innovative insole ODM solutions in Indonesia
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Indonesia pillow ODM development service
A groundbreaking study reveals that a simple creature from 700 million years ago, the ancestor to all bilaterians, established a body plan and genetic legacy that has significantly influenced the evolutionary trajectory of complex animals through the specialized adaptation of ancient genes. The image above depicts a mayfly, one of the 20 species studied in the paper. Credit: Isabel Almudi Gene duplication events hundreds of millions of years ago contributed to evolutionary innovations such as insect flight, octopus camouflage, and human cognition. 700 million years ago, a remarkable creature emerged for the first time. Though it may not have been much to look at by today’s standards, the animal had a front and a back, a top and a bottom. This was a groundbreaking adaptation at the time, and one which laid down the basic body plan which most complex animals, including humans, would eventually inherit. The inconspicuous animal resided in the ancient seas of Earth, likely crawling along the seafloor. This was the last common ancestor of bilaterians, a vast supergroup of animals including vertebrates (fish, amphibians, reptiles, birds, and mammals), and invertebrates (insects, arthropods, mollusks, worms, echinoderms, and many more). To this day, more than 7,000 groups of genes can be traced back to the last common ancestor of bilaterians, according to a study of 20 different bilaterian species including humans, sharks, mayflies, centipedes, and octopuses. The findings were made by researchers at the Centre for Genomic Regulation (CRG) in Barcelona and were recently published in the journal Nature Ecology and Evolution. Gene Evolution and Specialization Remarkably, the study found that around half of these ancestral genes have since been repurposed by animals for use in specific parts of the body, particularly in the brain and reproductive tissues. The findings are surprising because ancient, conserved genes usually have fundamental, important jobs that are needed in many parts of the body. When the researchers took a closer look, they found a series of serendipitous ‘copy-paste’ errors during bilaterian evolution were to blame. For example, there was a significant moment early in the history of vertebrates. A bunch of tissue-specific genes first appeared coinciding with two whole genome duplication events. Animals could keep one copy for fundamental functions, while the second copy could be used as raw material for evolutionary innovation. Events like these, at varying degrees of scale, occurred constantly throughout the bilaterian evolutionary tree. “Our genes are like a vast library of recipes that can be cooked up differently to create or change tissues and organs. Imagine you end up with two copies of a recipe for paella by accident. You can keep and enjoy the original recipe while evolution tweaks the extra copy so that it makes risotto instead. Now imagine the entire recipe book is copied – twice – and the possibilities it opens for evolution. The legacy of these events, which took place hundreds of millions of years ago, lives on in most complex animals today,” explains Federica Mantica, author of the paper and researcher at the Centre for Genomic Regulation (CRG) in Barcelona. Specialized Gene Functions Across Species The authors of the study found many examples of new, tissue-specific functions made possible by the specialization of these ancestral genes. For example, the TESMIN and tomb genes, which originated from the same ancestor, ended up independently playing a specialized role in the testis both in vertebrates and insects. Their importance is highlighted by the fact that problems with these genes can disrupt sperm production, affecting fertility in both mice and fruit flies. The specialization of ancestral genes also laid some foundations for the development of complex nervous systems. For example, in vertebrates, the researchers found genes critical for the formation of myelin sheaths around nerve cells, which are essential for fast nerve signal transmission. In humans, they also identified FGF17, which is thought to play an important role in maintaining cognitive functions into old age. In insects, specific genes became specialized in muscles and in the epidermis for cuticle formation, contributing to their ability to fly. In the skin of octopuses, other genes became specialized to perceive light stimuli, contributing to their ability to change color, camouflage, and communicate with other octopuses. By studying the evolution of species at the tissue level, the study demonstrates that changes in the way genes are used in different parts of the body have played a big role in creating new and unique features in animals. In other words, when genes start acting in specific tissues, it can lead to the development of new physical traits or abilities, which ultimately contributes to animal evolution. “Our work makes us rethink the roles and functions that genes play. It shows us that genes that are crucial for survival and have been preserved through millions of years can also very easily acquire new functions in evolution. It reflects evolution’s balancing act between preserving vital roles and exploring new paths,” concludes ICREA Research Professor Manuel Irimia, co-author of the paper and researcher at the Centre for Genomic Regulation. Reference: “Evolution of tissue-specific expression of ancestral genes across vertebrates and insects” by Federica Mantica, Luis P. Iñiguez, Yamile Marquez, Jon Permanyer, Antonio Torres-Mendez, Josefa Cruz, Xavier Franch-Marro, Frank Tulenko, Demian Burguera, Stephanie Bertrand, Toby Doyle, Marcela Nouzova, Peter D. Currie, Fernando G. Noriega, Hector Escriva, Maria Ina Arnone, Caroline B. Albertin, Karl R. Wotton, Isabel Almudi, David Martin and Manuel Irimia, 15 April 2024, Nature Ecology & Evolution. DOI: 10.1038/s41559-024-02398-5
A recent study has uncovered a direct pathway between the brain and its protective dura mater, debunking the notion of the brain’s complete isolation. Through innovative imaging, researchers identified arachnoid cuff exit (ACE) points, crucial for the brain’s waste disposal and interaction with the immune system. The study also links the aging process with the dysfunction of these points, offering insights into the development of neurodegenerative diseases. This discovery opens new avenues for treating brain-related health issues. The collaboration with NIH has implications for understanding the responses of the neural-immune system and the process of aging. In a recent study of the brain’s waste drainage system, researchers from Washington University in St. Louis, collaborating with investigators at the National Institute of Neurological Disorders and Stroke (NINDS), a part of the National Institute of Health (NIH), uncovered a direct link between the brain and its robust protective layer, the dura mater, through a study focusing on the brain’s waste elimination system. These links may allow waste fluid to leave the brain while also exposing the brain to immune cells and other signals coming from the dura. This challenges the conventional wisdom which has suggested that the brain is cut off from its surroundings by a series of protective barriers, keeping it safe from dangerous chemicals and toxins lurking in the environment. “Waste fluid moves from the brain into the body much like how sewage leaves our homes,” said NINDS’s Daniel S. Reich, M.D., Ph.D. “In this study, we asked the question of what happens once the ‘drain pipes’ leave the ‘house’—in this case, the brain—and connect up with the city sewer system within the body.” Reich’s group worked jointly with the lab of Jonathan Kipnis, Ph.D., a professor at Washington University in St. Louis. Reich’s lab used high-resolution magnetic resonance imaging (MRI) to observe the connection between the brain and the body’s lymphatic systems in humans. Meanwhile, Kipnis’s group was independently using live-cell and other microscopic brain imaging techniques to study these systems in mice. Using MRI, the researchers scanned the brains of a group of healthy volunteers who had received injections of gadobutrol, a magnetic dye used to visualize disruptions in the blood-brain barrier or other kinds of blood vessel damage. Large veins are known to pass through the arachnoid barrier carrying blood away from the brain, and these were clearly observed on the MRI scans. As the scan progressed, a ring of dye appeared around those large veins that slowly spread out over time, suggesting that fluid could make its way through the space around those large veins where they pass through the arachnoid barrier on their way into the dura. Kipnis’s lab was making similar observations in mice. His group injected mice with light-emitting molecules. Like with the MRI experiments, fluid containing these light-emitting molecules was seen to slip through the arachnoid barrier where blood vessels passed through. Discovery of Arachnoid Cuff Exit Points Together, the labs found a “cuff” of cells that surround blood vessels as they pass through the arachnoid space. These areas, which they called arachnoid cuff exit (ACE) points, appear to act as areas where fluid, molecules, and even some cells can pass from the brain into the dura and vice versa, without allowing complete mixing of the two fluids. In some disorders like Alzheimer’s disease, impaired waste clearance can cause disease-causing proteins to build up. Continuing the sewer analogy, Kipnis explained the possible connection to ACE points: “If your sink is clogged, you can remove water from the sink or fix the faucet, but ultimately you need to fix the drain,” he said. “In the brain, clogs at ACE points may prevent waste from leaving. If we can find a way to clean these clogs, its possible we can protect the brain.” One implication of ACE points is that they are areas where the immune system can be exposed to and react to changes occurring in the brain. When mice in Dr. Kipnis’s lab were induced to have a disorder where the immune system attacks the myelin in their brain and spinal cord, immune cells could be seen around ACE points and even between the blood vessel wall and the cuff cells; this led over time to a breakdown of the ACE point itself. When the ability of immune cells to interact directly with ACE points was blocked, the severity of infection was reduced. “The immune system uses molecules to communicate that cross from the brain into the dura mater,” said Kipnis. “This crossing needs to be tightly regulated, otherwise detrimental effects on brain function can occur.” Reich and his team also observed an interesting connection between the participants’ age and the leakiness of ACE points. In older participants, more dye leaked into the surrounding fluid and space around the blood vessels. “This might point to a slow breakdown of the ACE points over the course of aging,” said Reich, “and this could be consequential in that the brain and immune system can now interact in ways that they’re not supposed to.” The connection to aging and the disruption of a barrier separating the brain and immune system fits with what has been observed in aging mice and in autoimmune disorders like multiple sclerosis. This newfound link between the brain and the immune system could also help explain why our risk for developing neurodegenerative diseases increases as we get older, but more research is needed to confirm this connection. Reference: “Identification of direct connections between the dura and the brain” by Leon C. D. Smyth, Di Xu, Serhat V. Okar, Taitea Dykstra, Justin Rustenhoven, Zachary Papadopoulos, Kesshni Bhasiin, Min Woo Kim, Antoine Drieu, Tornike Mamuladze, Susan Blackburn, Xingxing Gu, María I. Gaitán, Govind Nair, Steffen E. Storck, Siling Du, Michael A. White, Peter Bayguinov, Igor Smirnov, Krikor Dikranian, Daniel S. Reich and Jonathan Kipnis, 7 February 2024, Nature. DOI: 10.1038/s41586-023-06993-7 This study was supported by the NINDS Intramural Research Program, the National Institute on Aging (AG034113, AG057496, AG078106), and the Cure Alzheimer’s Fund BEE Consortium.
A new theory proposes that our ancestors evolved distinct, complementary cognitive abilities in response to dramatic environmental and climatic variations. The period preceding the emergence of behaviorally modern humans was characterized by dramatic climatic and environmental variability – it is these pressures, occurring over hundreds of thousands of years that shaped human evolution. New research published today in the Cambridge Archaeological Journal proposes a new theory of human cognitive evolution entitled ‘Complementary Cognition’ which suggests that in adapting to dramatic environmental and climatic variabilities our ancestors evolved to specialize in different, but complementary, ways of thinking. Lead author Dr. Helen Taylor, Research Associate at the University of Strathclyde and Affiliated Scholar at the McDonald Institute for Archaeological Research, University of Cambridge, explained, “This system of complementary cognition functions in a way that is similar to evolution at the genetic level but instead of underlying physical adaptation, may underlay our species’ immense ability to create behavioral, cultural and technological adaptations. It provides insights into the evolution of uniquely human adaptations like language suggesting that this evolved in concert with specialization in human cognition.” Credit: University of Cambridge The theory of complementary cognition proposes that our species cooperatively adapt and evolve culturally through a system of collective cognitive search alongside genetic search which enables phenotypic adaptation (Darwin’s theory of evolution through natural selection can be interpreted as a ‘search’ process) and cognitive search which enables behavioral adaptation. Dr. Taylor continued, “Each of these search systems is essentially a way of adapting using a mixture of building on and exploiting past solutions and exploring to update them; as a consequence, we see evolution in those solutions over time. This is the first study to explore the notion that individual members of our species are neurocognitively specialized in complementary cognitive search strategies.” Complementary cognition could lie at the core of explaining the exceptional level of cultural adaptation in our species and provides an explanatory framework for the emergence of language. Language can be viewed as evolving both as a means of facilitating cooperative search and as an inheritance mechanism for sharing the more complex results of complementary cognitive search. Language is viewed as an integral part of the system of complementary cognition. The theory of complementary cognition brings together observations from disparate disciplines, showing that they can be viewed as various faces of the same underlying phenomenon. Dr. Taylor continued, “For example, a form of cognition currently viewed as a disorder, dyslexia, is shown to be a neurocognitive specialization whose nature, in turn, predicts that our species evolved in a highly variable environment. This concurs with the conclusions of many other disciplines including paleoarchaeological evidence confirming that the crucible of our species’ evolution was highly variable.” Nick Posford, CEO, British Dyslexia Association said, “As the leading charity for dyslexia, we welcome Dr. Helen Taylor’s ground-breaking research on the evolution of complementary cognition. Whilst our current education and work environments are often not designed to make the most of dyslexia-associated thinking, we hope this research provides a starting point for further exploration of the economic, cultural, and social benefits the whole of society can gain from the unique abilities of people with dyslexia.” At the same time, this may also provide insights into understanding the kind of cumulative cultural evolution seen in our species. Specialization in complementary search strategies and cooperatively adapting would have vastly increased the ability of human groups to produce adaptive knowledge, enabling us to continually adapt to highly variable conditions. But in periods of greater stability and abundance when adaptive knowledge did not become obsolete at such a rate, it would have instead accumulated, and as such complementary cognition may also be a key factor in explaining cumulative cultural evolution. Complementary cognition has enabled us to adapt to different environments, and may be at the heart of our species’ success, enabling us to adapt much faster and more effectively than any other highly complex organism. However, this may also be our species’ greatest vulnerability. Dr. Taylor concluded, “The impact of human activity on the environment is the most pressing and stark example of this. The challenge of collaborating and cooperatively adapting at scale creates many difficulties and we may have unwittingly put in place a number of cultural systems and practices, particularly in education, which are undermining our ability to adapt. These self-imposed limitations disrupt our complementary cognitive search capability and may restrict our capacity to find and act upon innovative and creative solutions.” Complementary cognition should be seen as a starting point in exploring a rich area of human evolution and as a valuable tool in helping to create an adaptive and sustainable society. Our species may owe our spectacular technological and cultural achievements to neurocognitive specialization and cooperative cognitive search, but our adaptive success so far may belie the importance of attaining an equilibrium of approaches. If this system becomes maladjusted, it can quickly lead to equally spectacular failures to adapt – and to survive, it is critical that this system be explored and understood further. Reference: “The Evolution of Complementary Cognition: Humans cooperatively adapt and evolve through a system of collective cognitive search” by Helen Taylor, Brice Fernandes and Sarah Wright, 16 June 2021, Cambridge Archaeological Journal. DOI: 10.1017/S0959774321000329
DVDV1551RTWW78V
Thailand ergonomic pillow OEM supplier 》long-term production solutions with flexible volumeLatex pillow OEM production in Thailand 》a manufacturing partner you can rely on for quality and deliveryTaiwan neck support pillow OEM factory 》elevating your brand with precision engineering and flexible production
下一則: Custom graphene foam processing Vietnam 》built to
限會員,要發表迴響,請先登入

