Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Eco-friendly pillow OEM manufacturer Taiwan
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.ODM service for ergonomic pillows Taiwan
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Customized sports insole ODM China
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.ODM pillow for sleep brands Thailand
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Thailand flexible graphene product manufacturing
Maize growth time-lapse. Grass is cut regularly by our mowers and grazed on by cows and sheep, yet continues to grow back. The secret to its remarkable regenerative powers lies in part in the shape of its leaves, but how that shape arises has been a topic of longstanding debate. The debate is relevant to our staple crops wheat, rice, and maize, because they are members of the grass family with the same type of leaf. The mystery of grass leaf formation has now been unraveled by a John Innes Centre team, in collaboration with Cornell University and the University of California, Berkley, and the University of Edinburgh using the latest computational modeling and developmental genetic techniques. One of the corresponding authors Professor Enrico Coen said of the findings which appear in Science: “The grass leaf has been a conundrum. By formulating and testing different models for its evolution and development we’ve shown that current theories are likely incorrect, and that a discarded idea proposed in the 19th century is much nearer the mark.” Developing Maize Plant – a staple crop and member of the grass family. A new study explains how the grass leaf evolved. Credit: Annis Richardson Flowering plants can be categorized into monocots and eudicots. Monocots, which include the grass family, have leaves that encircle the stem at their base and have parallel veins throughout. Eudicots, which include brassicas, legumes and most common garden shrubs and trees, have leaves that are held away from the stem by stalks, termed petioles, and typically have broad laminas with net-like veins. In grasses, the base of the leaf forms a tube-like structure, called the sheath. The sheath allows the plant to increase in height while keeping its growing tip close to the ground, protecting it from the blades of lawnmowers or incisors of herbivores. In the 19th Century, botanists proposed that the grass sheath was equivalent to the petiole of eudicot leaves. But this view was challenged in the 20th century, when plant anatomists noted that petioles have parallel veins, similar to the grass leaf, and concluded that the entire grass leaf (except for a tiny region at its tip) was derived from petiole. Using recent advances in computational modeling and developmental genetics, the team revisited the problem of grass development. They modeled different hypotheses for how grass leaves grow, and tested the predictions of each model against experimental results. To their surprise, they found that the model based on the 19th-century idea of sheath-petiole equivalence was much more strongly supported than the current view. This mirrors findings in animal development where a discarded theory – that the ‘underbelly’ side of insects corresponds to the back of vertebrates like us – was vindicated in the light of fresh developmental genetic research. The grass study shows how simple modulations of growth rules, based on a common pattern of gene activities, can generate a remarkable diversity of different leaf shapes, without which our gardens and dining tables would be much poorer. Reference: “Evolution of the grass leaf by primordium extension and petiole-lamina remodeling” by A. E. Richardson, J. Cheng, R. Johnston, R. Kennaway, B. R. Conlon, A. B. Rebocho, H. Kong, M. J. Scanlon, S. Hake and E. Coen, 9 December 2021, Science. DOI: 10.1126/science.abf9407
This is how the green light-regulated gene network works. Credit: ETH Zurich Many modern fitness trackers and smartwatches feature integrated LEDs. The green light emitted, whether continuous or pulsed, penetrates the skin and can be used to measure the wearer’s heart rate during physical activity or while at rest. These watches have become extremely popular. A team of ETH researchers now wants to capitalize on that popularity by using the LEDs to control genes and change the behavior of cells through the skin. The team is led by Martin Fussenegger from the Department of Biosystems Science and Engineering in Basel. He explains the challenge to this undertaking: “No naturally occurring molecular system in human cells responds to green light, so we had to build something new.” Green light from the smartwatch activates the gene The ETH professor and his colleagues ultimately developed a molecular switch that, once implanted, can be activated by the green light of a smartwatch. The switch is linked to a gene network that the researchers introduced into human cells. As is customary, they used HEK 293 cells for the prototype. Depending on the configuration of this network — in other words, the genes it contains — it can produce insulin or other substances as soon as the cells are exposed to green light. Turning the light off inactivates the switch and halts the process. Standard software As they used the standard smartwatch software, there was no need for the researchers to develop dedicated programs. During their tests, they turned the green light on by starting the running app. “Off-the-shelf watches offer a universal solution to flip the molecular switch,” Fussenegger says. New models emit light pulses, which are even better suited to keeping the gene network running. The molecular switch is more complicated, however. A molecule complex was integrated into the membrane of the cells and linked to a connecting piece, similar to the coupling of a railway carriage. As soon as green light is emitted, the component that projects into the cell becomes detached and is transported to the cell nucleus where it triggers an insulin-producing gene. When the green light is extinguished, the detached piece reconnects with its counterpart embedded in the membrane. Controlling implants with wearables The researchers tested their system on both pork rind and live mice by implanting the appropriate cells into them and strapping a smartwatch on like a rucksack. Opening the watch’s running program, the researchers turned on the green light to activate the cascade. “It’s the first time that an implant of this kind has been operated using commercially available, smart electronic devices — known as wearables because they are worn directly on the skin,” the ETH professor says. Most watches emit green light, a practical basis for a potential application as there is no need for users to purchase a special device. According to Fussenegger, however, it seems unlikely that this technology will enter clinical practice for at least another ten years. The cells used in this prototype would have to be replaced by the user’s own cells. Moreover, the system has to go through the clinical phases before it can be approved, meaning major regulatory hurdles. “To date, only very few cell therapies have been approved,” Fussenegger says. Reference: “Smart-watch-programmed green-light-operated percutaneous control of therapeutic transgenes” by Maysam Mansouri, Marie-Didiée Hussherr, Tobias Strittmatter, Peter Buchmann, Shuai Xue, Gieri Camenisch and Martin Fussenegger, 7 June 2021, Nature Communications. DOI: 10.1038/s41467-021-23572-4
A new method to profile gene activity in the living brain offers breakthroughs in epilepsy treatment and other neurological research, combining molecular analysis with brain activity recordings. Researchers have developed a pioneering technique to profile gene activity in the living human brain. Researchers at FutureNeuro, the SFI Research Centre for Translational Brain Science, and RCSI University of Medicine and Health Sciences, in collaboration with international partners, have developed a revolutionary technique to profile gene activity in the living human brain. This innovative approach, published in JCI Insight, opens new avenues for understanding and treating neurological conditions like epilepsy. Studying gene activity in the brain without requiring invasive tissue samples from surgery or post-mortem donation has been a long-standing challenge in neuroscience. By analyzing molecular traces – specifically RNA and DNA – collected from electrodes implanted in the brains of patients with epilepsy and linking these with electrical recordings from the brain, the researchers were able to take a ‘snapshot’ of gene activity in the living brain. Professor David Henshall, Director of FutureNeuro and Professor of Molecular Physiology and Neuroscience, RCSI. Credit: RCSI These electrodes, clinically used to pinpoint seizure activity in patients enabling surgical interventions, provide a unique opportunity to link brain activity to the genes being switched on or off in specific regions. The study demonstrates how integrating molecular data with electrical recordings of seizures can enhance our understanding of the brain’s seizure networks, potentially improving the precision of epilepsy surgeries. Broader research Professor David Henshall, Director of FutureNeuro and Professor of Molecular Physiology and Neuroscience at RCSI, said: “This study represents a significant advancement in epilepsy research, providing a method to detect active genes within the living brain of individuals with epilepsy. This technology has the potential to complement traditional brain imaging and EEG tests that measure electrical activity in the brain, offering valuable insights to guide surgical decision-making in the treatment of those with epilepsy.” Epilepsy affects approximately 40,000 people in Ireland, with one in three people unable to control seizures through medication. For these individuals, surgical intervention is often the best option, but its success hinges on accurately mapping the regions responsible for seizure activity. Beyond epilepsy, the study lays the groundwork for broader applications, including research into Alzheimer’s, Parkinson’s, and schizophrenia, where understanding molecular processes in the living brain is vital. A step forward The research, led by Professor Henshall and Professor Vijay Tiwari, Professor of Genome Biology at the University of Southern Denmark, also involved a global network of collaborators, including experts from Beaumont Hospital, Blackrock Clinic, Queen’s University Belfast, the University of Southern Denmark, and the Danish Institute for Advanced Study. It underscores the value of international collaboration and marks a step forward in understanding how our brains function at the molecular level, offering hope for improved diagnosis and care for those impacted by neurological conditions. Reference: “High-resolution multimodal profiling of human epileptic brain activity via explanted depth electrodes” by Anuj Kumar Dwivedi, Arun Mahesh, Albert Sanfeliu, Julian Larkin, Rebecca A. Siwicki, Kieron J. Sweeney, Donncha F. O’Brien, Peter Widdess-Walsh, Simone Picelli, David C. Henshall and Vijay K. Tiwari, 14 November 2024, JCI Insight. DOI: 10.1172/jci.insight.184518 This study was funded by the Higher Education Authority (HEA) North-South Research Programme and FutureNeuro.
DVDV1551RTWW78V
Graphene insole OEM factory Vietnam 》the preferred OEM/ODM solution for emerging and established brandsLatex pillow OEM production in China 》meeting your quality standards, exceeding your expectationsPillow ODM design and manufacturing company in Taiwan 》committed to helping you create value through custom manufacturing
限會員,要發表迴響,請先登入

