Contents ...
udn網路城邦
Vietnam sustainable material ODM solutions 》recomm
2025/04/27 06:48
瀏覽23
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Indonesia custom neck pillow ODM

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Indonesia OEM/ODM hybrid insole services

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Arch support insole OEM from Taiwan

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Indonesia custom insole OEM supplier

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Graphene insole manufacturer in Vietnam

A map illustrating the occurrence of mollusks in marine shelf environments between 1700 and 2020, with darker hexagons indicating fewer and lighter indicating more. By compiling and analyzing mollusk fossil data from the past 145 million years, Nebraska’s Will Gearty and colleagues have shown that temperature largely explains the diversity of aquatic life in the tropics. Human-driven global warming is expected to reduce that tropical biodiversity in coming centuries. Credit: Adapted from figure in Current Biology / Cell Press Findings indicate global warming could reduce biodiversity in tropics. The bulging, equator-belted midsection of Earth currently teems with a greater diversity of life than anywhere else — a biodiversity that generally wanes when moving from the tropics to the mid-latitudes and the mid-latitudes to the poles. As well-accepted as that gradient is, though, ecologists continue to grapple with the primary reasons for it. New research from the University of Nebraska-Lincoln, Yale University and Stanford University suggests that temperature can largely explain why the greatest variety of aquatic life resides in the tropics — but also why it has not always and, amid record-fast global warming, soon may not again. Published in May 2021 in the journal Current Biology, the study estimates that marine biodiversity tends to increase until the average surface temperature of the ocean reaches about 65 degrees Fahrenheit, beyond which that diversity slowly declines. During intervals of Earth’s history when the maximum surface temperature was lower than 80 degrees Fahrenheit, the greatest biodiversity was found around the equator, the study concluded. But when that maximum exceeded 80 degrees, marine biodiversity ebbed in the tropics, where those highest temperatures would have manifested, while peaking in waters at the mid-latitudes and the poles. Marine life that could travel considerable distances likely migrated north or south from the tropics during periods of extreme heat, said co-author Will Gearty, a postdoctoral researcher of biological sciences at Nebraska. Stationary or slower-moving animals, such as sponges and sea stars, may have instead faced extinction. “People have always theorized that the tropics are a cradle of diversity — that it pops up and then is protected there,” Gearty said. “There’s also this idea that … there’s lots of migration toward the tropics, but not away from it. All of that centers around the idea that the highest diversity will always be in the tropics. And that’s not what we see as we go back in time.” Gearty, Yale’s Thomas Boag and Stanford’s Richard Stockey went back about 145 million years, compiling estimated temperatures and fossil records of mollusks — snails, clams, cephalopods and the like — from 24 horizontal bands of Earth that were equal in surface area. The trio chose mollusk records for multiple reasons: They live (and lived) around the globe, in large enough numbers to accommodate statistical analyses, with hard enough shells to yield identifiable fossils, with enough variation that their diversity trends might generalize to fish, corals, crustaceans and an array of other marine animals. That data allowed the team to derive the temperature-diversity relationship across 10 geologic intervals that covered most of the elapsed time from the Cretaceous period through the modern day. “Temperature seems to account for a lot of the trend that we see in the fossil record,” Gearty said. “There are certainly other factors, but this seems to be the first-order predictor of what’s going on.” To investigate why temperature might be so influential and predictive, Stockey took the lead in developing a mathematical model. The model accounts for the fact that higher temperatures generally increase the amount of energy in an ecosystem, theoretically raising the ceiling on the biodiversity an ecosystem can sustain, at least to a point. But it also factors in metabolism and the small matter of oxygen, which, by dissolving in water, makes aquatic life possible in the first place. Colder waters dissolve more oxygen, meaning that elevated temperatures naturally reduce the amount available to marine life and, by extension, potentially limit the biodiversity an ecosystem can support. Higher temperatures also raise the metabolic demands of organisms, increasing the minimum oxygen needed to sustain active marine animals. “That means you require more oxygen in warmer waters,” Gearty said. “And if the amount of oxygen available is not satisfying that increase in metabolism, you won’t survive in that environment. So, to survive, you’ll need to move to another environment where the temperature is lower.” The team applied its model to numerous marine species with varying metabolisms. As expected, metabolism influenced how the population of a given species would respond to a rise in temperature, along with the temperature threshold beyond which that population would decline. When the researchers averaged the effects of metabolism and oxygen availability across those species, they discovered that the resulting temperature-diversity relationship resembled — and, in doing so, supported — the one they derived from the fossil record. “It shows a similar trend of this (biodiversity) increase and then decrease,” Gearty said. “After many a day at the whiteboard just trying to figure out how to make it work, it all just came together very nicely at the end — you know, a nice little bow on top.” Collectively, the study indicates that human-driven global warming could hit the inhabitants of tropical waters especially hard. The average surface temperature of tropical waters could jump by as many as 6 degrees Fahrenheit by the year 2300, according to one projection. And according to the fossil records analyzed for the study, similar temperature increases during the past 145 million years have sometimes permanently driven mollusk species from tropical waters. There are worrying signs that the expected trend is already underway, Gearty said. Though the team had difficulty narrowing down the projected magnitude of the decline in biodiversity, Gearty said the worst-case projection called for the tropics losing up to 50% of their marine species by 2300. Some of the loss will take the form of migration. Yet the warming could spell doom for, say, corals and the thousands of marine species that they support, he said, as seen in the oft-fatal bleaching of the Great Barrier Reef off the coast of Australia. “This (biodiversity loss) is already happening, and it will only keep happening unless we do something,” Gearty said. “We can’t really take back the buildup of carbon dioxide (in the atmosphere) that’s already happened, so it’s going to keep happening for some amount of time. But it’s up to us to determine how long until it’ll stop.” Reference: “Metabolic tradeoffs control biodiversity gradients through geological time” by Thomas H. Boag, William Gearty and Richard G. Stockey, 6 May 2021, Current Biology. DOI: 10.1016/j.cub.2021.04.021

The unique coloration of giant pandas helps to camouflage them. The high-contrast pattern of giant pandas helps them blend in with their natural environment. Researchers at the University of Bristol, Chinese Academy of Sciences, and the University of Jyväskylä have used state-of-the-art image analysis techniques to demonstrate, counterintuitively, that the unique colorings work to disguise the giant panda. The results have been published today (October 28, 2021) in Scientific Reports. While most mammals are drab browns and greys, there are a small number of well-known and intriguing exceptions such as zebras, skunks, and orcas. Perhaps the most famous of all however is the giant panda. The international team analyzed rare photographs of the giant pandas, taken in their natural environment. They discovered that their black pelage patches blend in with dark shades and tree trunks, whereas their white patches match foliage and snow when present. Also, infrequent pale brown pelage tones match the ground color, providing an intermediate color that bridges the gap between the very dark and very light visual elements in the natural habitat. The results are consistent whether viewed by human, felid, or canine vision models; the last two represent panda predators. Giant panda. Credit: Anssi Nokelainen Next, the researchers examined a second form of camouflage — disruptive coloration — in which highly visible boundaries on the surface of an animal break up its outline — in the panda’s case the borders between the large black and white patches of fur. They found that giant pandas show this form of defensive coloration, especially at longer viewing distances. Finally, the researchers utilized a novel color map technique to compare a similarity-to-background metric across a variety of species, as well as the giant panda. This comparative analysis confirmed that the background resemblance of the giant panda fell solidly within other species that are traditionally considered as well camouflaged. Prof Tim Caro of Bristol’s School of Biological Sciences explained: “I knew we were on to something when our Chinese colleagues sent us photographs from the wild and I couldn’t see the giant panda in the picture. If I couldn’t see it with my good primate eyes, that meant that would-be carnivorous predators with their poorer eyesight might not be able to see it either. It was simply a matter of demonstrating this objectively.” Dr. Ossi Nokelainen, the lead author, added: “The rare photographic evidence allowed us to examine the giant panda’s appearance in its natural environment for the first time. With the help of state-of-the-art image analysis, we were able to treat these images as if the pandas would have been seen by their predator surrogates using applied vision modeling techniques and also to explore their disruptive coloration. Comparative results totally bust the myth of giant pandas being overtly conspicuous in their natural habitat.” Prof Nick Scott-Samuel of Bristol’s School of Psychological Science said: “It seems that giant pandas appear conspicuous to us because of short viewing distances and odd backgrounds: when we see them, either in photographs or at the zoo, it is almost always from close up, and often against a backdrop that doesn’t reflect their natural habitat. From a more realistic predator’s perspective, the giant panda is actually rather well camouflaged.” Reference: “The giant panda is cryptic” by Ossi Nokelainen, Nicholas E. Scott-Samuel, Yonggang Nie, Fuwen Wei and Tim Caro, 28 October 2021, Scientific Reports. DOI: 10.1038/s41598-021-00742-4

Fluorescent image of the octopus brain showing the location of different different types of neurons Credit: Niell Lab Researchers have mapped the octopus optic lobe, revealing diverse neuron types and brain growth, offering a model for brain complexity that could inform future research on visual processing and brain evolution. It’s hard for the octopus to pick just one party trick. This magnificent creature swims via jet propulsion, shoots inky chemicals at its enemies, and can change its skin to blend in with its surroundings within seconds. Now, a team of University of Oregon (UO) researchers has investigated yet another distinctive feature of this eight-armed marine animal: its outstanding visual capabilities. They lay out a detailed map of the octopus’s visual system in a new scientific paper. In the map, they classify different types of neurons in a part of the brain devoted to vision. This results in is a valuable resource for other neuroscientists, providing details that could guide future experiments. In addition, it could teach us something about the evolution of brains and visual systems more broadly. The team reports their findings today (October 31) in the journal Current Biology. Cris Niell’s lab at the UO studies vision, mostly in mice. But a few years ago, postdoc Judit Pungor brought a new species to the lab — the California two-spot octopus. Although it is not traditionally used as a study subject in the lab, this cephalopod quickly captured the interest of UO neuroscientists. Unlike mice, which are not known for having good vision, “octopuses have an amazing visual system, and a large fraction of their brain is dedicated to visual processing,” Niell said. “They have an eye that’s remarkably similar to the human eye, but after that, the brain is completely different. Octopus and Human Eyes: Convergent Evolution The last common ancestor between octopuses and humans was 500 million years ago, and the species have since evolved in very different contexts. So scientists didn’t know whether the parallels in visual systems extended beyond the eyes, or whether the octopus was instead using completely different kinds of neurons and brain circuits to achieve similar results.   “Seeing how the octopus eye convergently evolved similarly to ours, it’s cool to think about how the octopus visual system could be a model for understanding brain complexity more generally,” said Mea Songco-Casey, a graduate student in Niell’s lab and the first author on the paper. “For example, are there fundamental cell types that are required for this very intelligent, complex brain?” Identifying Neuron Classes in the Octopus Optic Lobe Here, the team used genetic techniques to identify different types of neurons in the octopus’s optic lobe, the part of the brain that’s devoted to vision. They picked out six major classes of neurons, distinguished based on the chemical signals they send. Looking at the activity of certain genes in those neurons then revealed further subtypes, providing clues to more specific roles. In some cases, the scientists pinpointed particular groups of neurons in distinctive spatial arrangements — for example, a ring of neurons around the optic lobe that all signal using a molecule called octopamine. Fruit flies use this molecule, which is similar to adrenaline, to increase visual processing when the fly is active. So it could perhaps have a similar role in octopuses. “Now that we know there’s this very specific cell type, we can start to go in and figure out what it does,” Niell said. Brain Growth and Immature Neurons About a third of the neurons in the data didn’t quite look fully developed. The octopus brain keeps growing and adding new neurons over the animal’s lifespan. These immature neurons, not yet integrated into brain circuits, were a sign of the brain in the process of expanding! However, the map didn’t reveal sets of neurons that clearly transferred over from humans or other mammalian brains, as the researchers thought it might. “At the obvious level, the neurons don’t map onto each other—they’re using different neurotransmitters,” Niell said. “But maybe they’re doing the same kinds of computations, just in a different way.” Digging deeper will also require getting a better handle on cephalopod genetics. Because the octopus hasn’t traditionally been used as a lab animal, many of the tools that are used for precise genetic manipulation in fruit flies or mice don’t yet exist for the octopus, said Gabby Coffing, a graduate student in Andrew Kern’s lab who worked on the study. “There are a lot of genes where we have no idea what their function is, because we haven’t sequenced the genomes of a lot of cephalopods,” Pungor said. Without genetic data from related species as a point of comparison, it’s harder to deduce the function of particular neurons. Niell’s team is up for the challenge. They’re now working to map the octopus brain beyond the optic lobe, seeing how some of the genes they focused on in this study show up elsewhere in the brain. They are also recording from neurons in the optic lobe, to determine how they process the visual scene. In time, their research might make these mysterious marine animals a little less murky — and shine a little light on our own evolution, too. Reference: “Cell types and molecular architecture of the Octopus bimaculoides visual system” by Jeremea O. Songco-Casey,  Gabrielle C. Coffing, Denise M. Piscopo, Judit R. Pungor, Andrew D. Kern, Adam C. Miller and Cristopher M. Niell, 31 October 2022, Current Biology. DOI: 10.1016/j.cub.2022.10.015

DVDV1551RTWW78V



Thailand insole ODM design and production 》customized solutions that grow with your businessIndonesia flexible graphene product manufacturing 》your trusted source for functional product developmentThailand sustainable material ODM solutions 》delivering consistent quality from sample to mass production

限會員,要發表迴響,請先登入