Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Taiwan custom insole OEM factory
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Breathable insole ODM innovation factory Taiwan
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.China orthopedic insole OEM manufacturer
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.China pillow OEM manufacturer
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Private label insole and pillow OEM production factory
Phytoplasma effector SAP05 induces witches’ broom in Arabidopsis. Credit: John Innes Centre Zombie plants, witches’ brooms and the curse that might contain a cure. A newly discovered manipulation mechanism used by parasitic bacteria to slow down plant aging, may offer new ways to protect disease-threatened food crops. Parasites manipulate the organisms they live off to suit their needs, sometimes in drastic ways. When under the spell of a parasite, some plants undergo such extensive changes that they are described as “zombies”. They stop reproducing and serve only as a habitat and host for the parasitic pathogens. Until now, there’s been little understanding of how this happens on a molecular and mechanistic level. Research from the Hogenhout group at the John Innes Centre and collaborators published in Cell, has identified a manipulation molecule produced by Phytoplasma bacteria to hijack plant development. When inside a plant, this protein causes key growth regulators to be broken down, triggering abnormal growth. Phytoplasma bacteria belong to a group of microbes that are notorious for their ability to reprogram the development of their host plants. This group of bacteria are often responsible for the ‘witches’ brooms’ seen in trees, where an excessive number of branches grow close together. These bushy outgrowths are the result of the plant being stuck in a vegetative “zombie” state, unable to reproduce, and therefore progress to a ‘forever young’ status. Phytoplasma bacteria can also cause devastating crop disease, such as Aster Yellows which causes significant yield losses in both grain and leaf crops like lettuce, carrots, and cereals. Professor Saskia Hogenhout, corresponding author of the study said: “Phytoplasmas are a spectacular example of how the reach of genes can extend beyond the organisms to impact surrounding environments. “Our findings cast new light on a molecular mechanism behind this extended phenotype in a way that could help solve a major problem for food production. We highlight a promising strategy for engineering plants to achieve a level of durable resistance of crops to phytoplasmas.” The new findings show how the bacterial protein known as SAP05 manipulates plants by taking advantage of some of the host’s own molecular machinery. This machinery, called the proteasome, usually breaks down proteins that are no longer needed inside plant cells. SAP05 hijacks this process, causing plant proteins that are important in regulating growth and development, to effectively be thrown in a molecular recycling center. Without these proteins, the plant’s development is reprogrammed to favor the bacteria, triggering the growth of multiple vegetative shoots and tissues and putting the pause on the plant aging. Through genetic and biochemical experiments on the model plant Arabidopsis thaliana, the team uncovered in detail the role of SAP05. Interestingly, SAP05 binds directly to both the plant developmental proteins and the proteasome. The direct binding is a newly discovered way to degrade proteins. Usually, proteins that are degraded by the proteasome are tagged with a molecule called ubiquitin beforehand, but this is not the case here. The plant developmental proteins that are targeted by SAP05 are similar to proteins also found in animals. The team were curious to see if SAP05 therefore also affects the insects that carry the bacteria from plant to plant. They found that the structure of these host proteins in animals differ enough that they do not interact with SAP05, and so it does not affect the insects. However, this investigation allowed the team to pinpoint just two amino acids in the proteasome unit that are needed to interact with SAP05. Their research showed that if the plant proteins are switched to have the two amino acids found in the insect protein instead, they are no longer degraded by SAP05, preventing the ‘witches’ broom’ abnormal growth. This finding offers the possibility of tweaking just these two amino acids in crops, for example using gene-editing technologies, to provide durable resilience to phytoplasmas and the effects of SAP05. Reference: “Parasitic modulation of host development by ubiquitin-independent protein degradation” by Weijie Huang, Allyson M. MacLean, Akiko Sugio, Abbas Maqbool, Marco Busscher, Shu-Ting Cho, Sophien Kamoun, Chih-Horng Kuo, Richard G.H. Immink and Saskia A. Hogenhout, 17 September 2021, Cell. DOI: 10.1016/j.cell.2021.08.029
Researchers at Yale and the University of Connecticut discovered that electrical synapses in the brain play a vital role in filtering sensory information, enabling animals to make context-specific decisions. Their study on C. elegans worms showed that a specific protein (INX-1) in electrical synapses helps prioritize important signals, guiding behavior effectively. Researchers discovered that electrical synapses filter sensory signals in animals, enabling context-specific decision-making—a finding with broad implications for neuroscience. Scientists from Yale University and the University of Connecticut have made a significant breakthrough in understanding how animal brains make decisions. Their research highlights the critical role of electrical synapses in “filtering” sensory information. Published in the journal Cell, the study shows that a specific arrangement of electrical synapses allows animals to make appropriate decisions based on context, even when they encounter similar sensory signals. Animal brains are constantly bombarded with sensory information — sights, sounds, smells, and more. Making sense of this information, scientists say, requires a sophisticated filtering system that focuses on relevant details and enables an animal to act accordingly. Such a filtering system doesn’t simply block out “noise” — it actively prioritizes information depending on the situation. Focusing on certain sensory information and deploying a context-specific behavior is known as “action selection.” The Worm Model: C. elegans and Temperature Navigation The Yale-led study focused on a worm, C. elegans, which, surprisingly, provides a powerful model for understanding the neural mechanisms of action selection. C. elegans can learn to prefer specific temperatures; when in a temperature gradient, it uses a simple, yet effective strategy to navigate towards its preferred temperature. Worms first move across the gradient towards their preferred temperature (a behavior called “gradient migration”) — and once they have identified temperature conditions more to their liking, they track that temperature, which allows them to stay within their preferred range (a behavior called “isothermal tracking”). Worms also can perform these behaviors in context-specific manners, deploying gradient migration when they are far away from their preferred temperature, and isothermal tracking when they are near a preferred temperature. But how are they able to perform the correct behavior in the correct context? For the new study, the researchers investigated a specific type of connection between neuronal cells, called electrical synapses, which differs from the more widely studied chemical synapses. They found that these electrical synapses, mediated by a protein called INX-1, connect a specific pair of neurons (AIY neurons) which are responsible for controlling locomotion decisions in the worm. “Altering this electrical conduit in a single pair of cells can change what the animal chooses to do,” said Daniel Colón-Ramos, the Dorys McConnell Duberg Professor of Neuroscience and Cell Biology at Yale School of Medicine and corresponding author of the study. The team found that these electrical synapses don’t simply transmit signals, they also act as a “filter.” In worms with normal INX-1 function, the electrical connection effectively dampens signals from the thermosensory neurons, allowing the worm to ignore weak temperature variations and focus on the larger changes experienced in the temperature gradient. This ensures that the worms move efficiently across the gradient and toward their preferred temperature without getting distracted by context-irrelevant signals, like those experienced in isothermal tracks which present throughout the gradient but are not at the preferred temperatures. Consequences of Disrupted Electrical Synapses However, in worms lacking INX-1, the AIY neurons become hypersensitive, responding much more strongly to minor temperature fluctuations. This hypersensitivity causes the worms to react to these small signals, trapping the animals in isotherms that are not their preferred temperature. Such abnormal tracking of isotherms within incorrect contexts adversely affects the worms’ ability to move across the temperature gradient toward their preferred temperature. “It would be like watching a confused bird flying with its legs extended,” Colón-Ramos said. “Birds normally extend their legs prior to landing but were a bird to extend its legs in the incorrect context it would be detrimental to its normal behavior and goals.” Since electrical synapses are found throughout the nervous systems of many animals, from worms to humans, the findings have significant implications beyond the behavior of worms. “Scientists will be able to use this information to examine how relationships in single neurons can change how an animal perceives its environment and responds to it,” Colón-Ramos said. “While the specific details of action selection will likely vary, the underlying principle of the role of electrical synapses in coupling neurons to alter responses to sensory information could be widespread. “For example, in our retina, a group of neurons called ‘amacrine cells’ uses a similar configuration of electrical synapses to regulate visual sensitivity when our eyes adapt to light changes.” Synaptic configurations are central to the way animals process sensory information and then react, and the results uncovered in the new study suggest that configurations of electrical synapses play a crucial role in modulating how nervous systems process context-specific sensory information to guide perception and behavior in animals. Reference: “Configuration of electrical synapses filters sensory information to drive behavioral choices” by Agustin Almoril-Porras, Ana C. Calvo, Longgang Niu, Jonathan Beagan, Malcom Díaz García, Josh D. Hawk, Ahmad Aljobeh, Elias M. Wisdom, Ivy Ren, Zhao-Wen Wang and Daniel A. Colón-Ramos, 31 December 2024, Cell. DOI: 10.1016/j.cell.2024.11.037 Colón-Ramos is also associate director of Yale’s Wu Tsai Institute, which is devoted to the study of cognition. The study’s co-lead authors are Agustin Almoril-Porras and Ana Calvo from Yale. Co-authors are Jonathan Beagan, Malcom Díaz Garcia, Josh Hawk, Ahmad Aljobeh, Elias Wisdom, and Ivy Ren, all of Yale; and Longgang Niu and Zhao-Wen Wang of the University of Connecticut. The work was supported by the National Institutes of Health, the National Science Foundation, and a Howard Hughes Medical Institute Scholar Award.
KAIST researchers developed a technology that reverses cancer by identifying a genetic switch at the moment cells become cancerous. KAIST researchers have discovered a molecular switch that can revert cancer cells back to normal by capturing the critical transition state before full cancer development. Using a computational gene network model based on single-cell RNA sequencing, they identified key molecular mechanisms behind cancer reversion. Professor Kwang-Hyun Cho’s research team has recently gained recognition for developing an innovative cancer reversal treatment technology that does not kill cancer cells but instead alters their characteristics, restoring them to a state similar to normal cells. This time, they have successfully uncovered, for the first time, a molecular switch hidden within the genetic network that can induce cancer reversal at the precise moment when normal cells transform into cancer cells. KAIST (President Kwang-Hyung Lee) announced on February 5th that Professor Cho’s team from the Department of Bio and Brain Engineering has successfully developed a fundamental technology to detect and analyze the critical transition phase when normal cells become cancerous. This breakthrough has led to the discovery of a molecular switch capable of reverting cancer cells back to their normal state. Overall conceptual framework of the technology that automatically constructs a molecular regulatory network from single-cell RNA sequencing data of colon cancer cells to discover molecular switches for cancer reversion through computer simulation analysis. Professor Kwang-Hyun Cho’s research team established a fundamental technology for automatic construction of a computer model of a core gene network by analyzing the entire process of tumorigenesis of colon cells turning into cancer cells, and developed an original technology for discovering the molecular switches that can induce cancer cell reversal through attractor landscape analysis. Credit: KAIST Laboratory for Systems Biology and Bio-Inspired Engineering A critical transition is a phenomenon in which a sudden change in state occurs at a specific point in time, like water changing into steam at 100℃. This critical transition phenomenon also occurs in the process in which normal cells change into cancer cells at a specific point in time due to the accumulation of genetic and epigenetic changes. Schematic diagram of the research results. Professor Kwang-Hyun Cho’s research team developed an original technology to systematically discover key molecular switches that can induce reversion of colon cancer cells through a systems biology approach using an attractor landscape analysis of a genetic network model for the critical transition at the moment of transformation from normal cells to cancer cells, and verified the reversing effect of actual colon cancer through cellular experiments. Credit: KAIST Laboratory for Systems Biology and Bio-Inspired Engineering The research team discovered that normal cells can enter an unstable critical transition state where normal cells and cancer cells coexist just before they change into cancer cells during tumorigenesis, the production or development of tumors, and analyzed this critical transition state using a systems biology method to develop a cancer reversal molecular switch identification technology that can reverse the cancerization process. They then applied this to colon cancer cells and confirmed through molecular cell experiments that cancer cells can recover the characteristics of normal cells. Photo. (From left) PhD student Seoyoon D. Jeong, (bottom) Professor Kwang-Hyun Cho, (top) Dr. Dongkwan Shin, Dr. Jeong-Ryeol Gong Credit: KAIST Laboratory for Systems Biology and Bio-Inspired Engineering Innovative Computational Approach to Cancer Reversion This is an original technology that automatically infers a computer model of the genetic network that controls the critical transition of cancer development from single-cell RNA sequencing data, and systematically finds molecular switches for cancer reversion by simulation analysis. It is expected that this technology will be applied to the development of reversion therapies for other cancers in the future. Reconstruction of a dynamic network model for the transition state of colorectal cancer. A new technology was established to build a gene network computer model that can simulate the dynamic changes between genes by integrating single-cell RNA sequencing data and existing experimental results on gene-to-gene interactions in the critical transition of cancer. (a). Using this technology, a gene network computer model for the critical transition of colorectal cancer was constructed, and the distribution of attractors representing normal and cancer cell phenotypes was investigated through attractor landscape analysis (b-e). Credit: KAIST Laboratory for Systems Biology and Bio-Inspired Engineering Professor Kwang-Hyun Cho said, “We have discovered a molecular switch that can revert the fate of cancer cells back to a normal state by capturing the moment of critical transition right before normal cells are changed into an irreversible cancerous state.” He continued, “In particular, this study has revealed in detail, at the genetic network level, what changes occur within cells behind the process of cancer development, which has been considered a mystery until now.” He emphasized, “This is the first study to reveal that an important clue that can revert the fate of tumorigenesis is hidden at this very critical moment of change.” Identification of tumor transition state using single-cell RNA sequencing data from colorectal cancer. Using single-cell RNA sequencing data from colorectal cancer patient-derived organoids for normal and cancerous tissues, a critical transition was identified in which normal and cancerous cells coexist and instability increases (a-d). The critical transition was confirmed to show intermediate levels of major phenotypic features related to cancer or normal tissues that are indicative of the states between the normal and cancerous cells (e). Credit: KAIST Laboratory for Systems Biology and Bio-Inspired Engineering The results of this study, conducted by KAIST Dr. Dongkwan Shin (currently at the National Cancer Center), Dr. Jeong-Ryeol Gong, and doctoral student Seoyoon D. Jeong jointly with a research team at Seoul National University that provided the organoids (in vitro cultured tissues) from colon cancer patient, were published as an online paper in the international journal Advanced Science. Identification and experimental validation of the optimal target gene for cancer reversion. Among the common target genes of the discovered transcription factor combinations, we identified cancer reversing molecular switches that are predicted to suppress cancer cell proliferation and restore the characteristics of normal colon cells (a-d). When inhibitors for the molecular switches were treated to organoids derived from colon cancer patients, it was confirmed that cancer cell proliferation was suppressed and the expression of key genes related to cancer development was inhibited (e-h), and a group of genes related to normal colon epithelium was activated and transformed into a state similar to normal colon cells (i-j). Credit: KAIST Laboratory for Systems Biology and Bio-Inspired Engineering Reference: “Attractor Landscape Analysis Reveals a Reversion Switch in the Transition of Colorectal Tumorigenesis” by Dongkwan Shin, Jeong-Ryeol Gong, Seoyoon D. Jeong, Youngwon Cho, Hwang-Phill Kim, Tae-You Kim and Kwang-Hyun Cho, 22 January 2025, Advanced Science. DOI: 10.1002/advs.202412503 This study was conducted with the support of the National Research Foundation of Korea under the Ministry of Science and ICT through the Mid-Career Researcher Program and Basic Research Laboratory Program and the Disease-Centered Translational Research Project of the Korea Health Industry Development Institute (KHIDI) of the Ministry of Health and Welfare.
DVDV1551RTWW78V
Orthopedic pillow OEM solutions Vietnam 》combining comfort, performance, and brand-level supportIndonesia foot care insole ODM expert 》your competitive edge in product performance and speedTaiwan high-end foam product OEM/ODM factory 》driving your product success through every stage of manufacturing
下一則: Memory foam pillow OEM factory Indonesia 》trusted
限會員,要發表迴響,請先登入

