Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
ODM pillow factory in Vietnam
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Smart pillow ODM manufacturer Indonesia
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Eco-friendly pillow OEM manufacturer China
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Graphene insole OEM factory Taiwan
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Thailand graphene product OEM service
Fragment of the anterior end of an individual living worm (Ramisyllis multicaudata) dissected out of its host sponge. Bifurcation of the gut can be seen where the worm branches. The yellow structure is a differentiation of the digestive tube typical of the Family Syllidae. Credit: Ponz-Segrelles & Glasby International research team including Göttingen University first to describe tree-like internal anatomy of symbiotic worm and sponge. The marine worm Ramisyllis multicaudata, which lives within the internal canals of a sponge, is one of only two such species possessing a branching body, with one head and multiple posterior ends. An international research team led by the Universities of Göttingen and Madrid is the first to describe the internal anatomy of this intriguing animal. The researchers discovered that the complex body of this worm spreads extensively in the canals of their host sponges. In addition, they describe the anatomical details and nervous system of its unusual reproductive units, the stolons, which form their own brain when detached for fertilization, allowing them to navigate their environment. The results were published in the Journal of Morphology. The research team found the host sponges and their guest worms in a remote area in Darwin, Australia, where these animals live. They collected samples, some of which are now located in the collections of the Biodiversity Museum at the University of Göttingen. For their analysis, they combined techniques such as histology, electronic optical microscopy, immunohistochemistry, confocal laser microscopy, and X-ray computed microtomography. This made it possible to obtain three-dimensional images both of the worms’ different internal organs and of the interior of the sponges that they inhabit. The scientists show that when the body of these animals divides, so do all their internal organs, something that has never been observed before. Furthermore, the three-dimensional models developed during this research have made it possible to find a new anatomical structure exclusive to these animals, which is formed by muscular bridges that cross between the different organs whenever their body has to form a new branch. These muscular bridges are essential because they confirm that the bifurcation process does not occur in the early stages of life, but once the worms are adults and then throughout their lives. In addition, researchers propose that this unique “fingerprint” of muscle bridges makes it theoretically possible to distinguish the original branch from the new one in each bifurcation of the complex body network. In addition, this new study investigates the anatomy of the reproductive units (stolons) that develop in the posterior ends of the body when these animals are about to reproduce, and that are characteristic of the family to which they belong (Syllidae). The results show that these stolons form a new brain and have their own eyes. This allows them to navigate their environment when they are detached from the body for fertilization. This brain is connected to the rest of the nervous system by a ring of nerves that surrounds the intestine. “Our research solves some of the puzzles that these curious animals have posed ever since the first branched annelid was discovered at the end of the 19th century,” explains senior author Dr. Maite Aguado, University of Göttingen. “However, there is still a long way to go to fully understand how these fascinating animals live in the wild. For example, this study has concluded that the intestine of these animals could be functional, yet no trace of food has ever been seen inside them and so it is still a mystery how they can feed their huge branched bodies. Other questions raised in this study are how blood circulation and nerve impulses are affected by the branches of the body.” This research lays the foundations for understanding how these creatures live and how their incredible branched body came to evolve. Reference: “Integrative anatomical study of the branched annelid Ramisyllis multicaudata (Annelida, Syllidae)” by Guillermo Ponz‐Segrelles, Christopher J. Glasby, Conrad Helm, Patrick Beckers, Jörg U. Hammel, Rannyele P. Ribeiro and M. Teresa Aguado, 4 April 2021, Journal of Morphology. DOI: 10.1002/jmor.21356
Brown poop can indicate good health. Three-quarters of your poop consists of water and most of the rest is food your body didn’t digest. Once it exits the digestive system, poop is usually a shade of brown, regardless of the appearance of whatever you’ve had to eat and drink, because it contains a chemical your body makes. That chemical, stercobilin, is a product of the breakdown of hemoglobin – an iron-containing protein in red blood cells that allows oxygen to be transported around the body. Without sercobilin, your poop would probably look pale or even white. That’s because most of the chemicals that give food many different colors are completely broken down in the digestive process. Red blood cells live for only around 120 days before they are eventually replaced. As the hemoglobin they contain breaks down, a yellow protein called bilirubin gets produced. Bilirubin eventually makes its way to the liver through the circulatory system and is modified and then secreted into the small intestine by the liver in the form of bile. Bile, a yellow-green fluid, helps your body digest and absorb fats. While your body does absorb and reuse some bilirubin as the food you’re digesting moves through the small intestine, the rest of that bilirubin becomes stercobilin – which your body must dispose of. And that stercobilin gets combined with the stuff you’re digesting, making your poop brown by the time it exits your body. What you ingest travels a long way before what’s left makes an exit. Other colors Poop, of course, isn’t always brown. It can be a different color, depending on what you eat and how fast the stuff moves through your system. I’m a doctor who regularly treats children with digestive problems. Some of them have diarrhea – that is, liquid poop. It can be green or yellow because it contains a lot of bile. When poop moves too quickly through your body, the bilirubin in the bile does not have enough time to be broken down to form stercobilin, which would make it browner. If you eat a lot of something, especially if it’s hard for your body to quickly digest, your poop may look funny. For some people, eating beets leads to red poop or reddish urine. Your body can’t possibly absorb everything that you eat and drink. Some foods, like corn kernels, can’t be fully digested by people. They may even come out in poop looking the same size and color as when you ate them. Even though it may seem gross, I recommend that you regularly peek at your poop before flushing to make sure it’s brown and squishy. If most of it is an unusual color, such as black or white, it could be a sign you need to see a doctor. The same goes for having poop that is too hard or too runny. If your poop is red and you haven’t been eating beets, that might also be cause for concern. Written by Hannibal Person, Assistant Professor of Gastroenterology and Hepatology, School of Medicine, University of Washington. This article was first published in The Conversation.
Researchers have discovered, described, and named 12 new weevil species in Japan, Malaysia, Vietnam, and Taiwan. Aphanerostethus magnus and Aphanerostethus japonicus are found in Japan, with the latter also found in Yanbaru National Park, Okinawa. Credit: Lewis et al., 2024 Twelve new weevil species were discovered by Jake Lewis’s team at OIST, employing both innovative and classical taxonomy methods. Weevils are an exceptionally diverse group of beetles that includes many species with elephant trunk-like mouthparts, known as a rostrum. They provide numerous ecosystem services such as pollination and decomposition, although some species are notorious pests that can decimate crop fields and timber forests. Advancements in Weevil Classification In a new study published in Zookeys, a research team digitally removed the scales that cover the cuticle of the weevils using X-ray microtomography, a 3D imaging technique that uses X-rays to visualize cross sections of the internal structure of objects. The team, led by Jake Lewis, an entomologist in the Environmental Science and Informatics Section at the Okinawa Institute of Science and Technology (OIST), discovered that the underlying cuticle differs significantly between species and can therefore be used for taxonomic and classification purposes. X-ray microtomography generated 3D models of weevil species from the genus Aphanerostethus with the right elytron (forewing) removed, revealing differences in the length, width, and pattern of veins in the hindwing. A lateral view of the full body is shown below each closeup for reference. The red, blue, and yellow arrows indicate the base, midpoint, and apex of the hindwing, respectively. A: Aphanerostethus bifidus; B: A. decoratus; C: A. japonicus; D: A. magnus. Credit: Lewis et al., 2024 Using this innovative technique in combination with traditional light microscopy and DNA barcoding, they discovered, described, and named 12 new weevil species from Japan, Malaysia, Vietnam, and Taiwan. These species range from 1.5 to 3.0 mm in length and are comparatively small weevils. New Weevil Species Discovered Two of these new species are present in Japan: Aphanerostethus magnus (Oo-daruma-kuchikakushi-zoumushi) and Aphanerostethus japonicus (Nippon-daruma-kuchikakushi-zoumushi). One of these, Aphanerostethus japonicus, is also found in Yanbaru National Park, Okinawa. This is the first time x-ray microtomography has been used to remove obscuring scales to examine underlying differences in morphology for taxonomic purposes. The findings from this study have been published in the journal Zookeys. The researchers showed that removing scales using X-ray microtomography reveals significant morphological differences between species, which cannot be easily observed using other methods. Consequently, this technique may gain more popularity as a tool for identifying new insect species, especially those covered in scales or debris. OIST entomologist and Insect Collection Manager, Jake Lewis, searches for weevils on Okinawa Island, Japan. He and his collaborators collected weevils from Japan, Taiwan, Vietnam, and Malaysia, and discovered 12 new species. Credit: Merle Naidoo, OIST Lewis, OIST’s Insect Collection Manager and lead author of the paper, examined specimens from collections in Canada, Germany, Japan, Malaysia, Taiwan, and the Netherlands. One of the primary goals was to investigate the use of X-ray microtomography as a tool in weevil taxonomy. The genus Aphanerostethus was poorly studied in the past, but many undescribed species were discovered in museum collections around the world, including the two new species from Japan. Multiple Methods To Find New Species The researchers used traditional methods such as light microscopy and dissections to observe differences between species, including the scales along the elytra (back), leg spines, and the shape of the rostral canal (a canal that protects the rostrum). They also used DNA barcoding to analyze their genes and create a phylogenetic tree of eight of the species. Some species were not as easy to separate based on morphology alone, but as the gene sequences differ between species, the phylogenetic tree was informative and provided additional evidence of new species. Although the above methods are standard practice in taxonomy, the researchers’ use of X-ray microtomography was novel and was successfully used to examine the structure of not only the hidden cuticle but also the hindwings. Aphanerostethus weevils have lost the ability to fly due to the gradual reduction of their hindwings, however, the degree of reduction was shown to differ between species. Normally, specimens would have to be dissected to view the hindwings, but because x-ray microtomography allows for non-destructive examination of internal anatomy, it is invaluable when working with rare or precious specimens that cannot be dissected or altered. Phylogenetic tree of eight Aphanerostethus species constructed by comparing genetic information to see how closely related different species are. This helped Lewis and his team verify their predictions about species classification by using DNA analysis instead of only physical traits. The colored, vertical bars represent different species and includes the two new species from Japan. Credit: Lewis et al., 2024 The presence of partially reduced wings in some species offers a fascinating glimpse into the ongoing process of evolutionary change: “Some species have almost completely lost their hindwings, while others still have non-functional half-wings with remaining vein patterns. The differing degrees in hindwing loss is not only useful for taxonomy and systematics, but also shows how different species within the same group can be at different stages of losing a historically highly important organ that played a crucial role in insect evolution,” Lewis explained. Investing in Japan’s Natural Heritage The discovery of new weevil species can be challenging for two main reasons. Firstly, weevils are incredibly diverse, making complete cataloging time-consuming and tedious. Secondly, many weevil species are highly host-specific, may only inhabit very particular microhabitats, and may only be active for a short period of time as adults. For example, some species feed on a single tree species and may only occupy a certain part of a tree, such as the canopy. Furthermore, some species of weevils are strictly nocturnal and rarely observed during the daytime. This extreme specialization and variation in natural history means that unless researchers investigate at night and day, across seasons, and focus on specific parts of many different plant species, they will inevitably overlook certain species. Using x-ray microtomography, Jake Lewis’s team at OIST identified 12 new weevil species, enhancing traditional taxonomy and contributing to understanding weevil evolution and biodiversity. Credit: Lewis et al., 2024 Dr. Dan Warren, a research fellow at the Gulbali Institute for Applied Ecology and former leader of the Environmental Science and Informatics Section, emphasized the importance of investing in specimen collections: “These specimen collections are crucial for discovering new species and documenting biodiversity changes, both from human activities and natural cycles. They are essential tools for scientific research and conservation biology,” he stated. “Without proper support for them and the people who maintain them, we risk losing irreplaceable information on species and ecosystems, potentially before we even discover them.” “These new weevil species are part of Japan’s natural heritage, and although still poorly known ecologically, discovering and naming them is the first step towards an understanding of their biology,” Lewis added. Protected areas like Yanbaru National Park, home to the newly discovered A. japonicus, are essential to the protection of the island’s rich and endemic biodiversity. Reference: “The era of cybertaxonomy: X-ray microtomography reveals cryptic diversity and concealed cuticular sculpture in Aphanerostethus Voss, 1957 (Coleoptera, Curculionidae)” by Jake H. Lewis, Hiroaki Kojima, Miyuki Suenaga, Dimitrios Petsopoulos, Yusuke Fujisawa, Xuan Lam Truong and Dan L. Warren, 29 October 2024, ZooKeys. DOI: 10.3897/zookeys.1217.126626
DVDV1551RTWW78V
Indonesia insole OEM manufacturer 》where innovation meets ergonomic comfort and market demandThailand graphene product OEM service 》from raw material to finished product,we do it allTaiwan graphene product OEM factory 》seamless coordination from idea to finished product
下一則: Eco-friendly pillow OEM manufacturer Indonesia 》yo
限會員,要發表迴響,請先登入

