Contents ...
udn網路城邦
Thailand graphene product OEM service 》helping bra
2025/04/27 02:10
瀏覽20
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Thailand insole ODM for global brands

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Vietnam ergonomic pillow OEM supplier

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Orthopedic pillow OEM solutions Indonesia

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Insole ODM production factory in Taiwan

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Graphene-infused pillow ODM Taiwan

A groundbreaking study reveals that two key brain regions, previously thought to be dedicated to language processing, are actually more involved in social-semantic working memory, challenging traditional views on language and social cognition. A study conducted by Professor LIN Nan and his team at the Institute of Psychology of the Chinese Academy of Sciences revealed that while processing sentences, the brain activity in two canonical language regions, specifically the left ventral temporoparietal junction (vTPJ) and the lateral anterior temporal lobe (lATL), is associated with social-semantic working memory rather than language processing per se. The study was recently published in the journal Nature Human Behaviour. Linking Language and Social Cognition Language and social cognition are two deeply interrelated abilities of the human species but have traditionally been studied as two separate domains. Both sentence processing and social tasks can evoke neural activity in the left vTPJ and lATL, suggesting that the function of these regions may link language comprehension with social cognition. However, previous studies have attributed the activity of these regions in language tasks to general semantic and/or syntactic processing, whereas their activity in social tasks is attributed to social concept activation. New Hypothesis and Methodology In this study, the researchers tested a novel hypothesis that the activity of the left vTPJ and lATL in language and social tasks are both due to a common cognitive component—i.e., social-semantic working memory. Using fMRI experiments, they validated that these regions were sensitive to sentences only if the sentences conveyed social meaning. In addition, these regions showed persistent social-semantic-selective activity after the linguistic stimuli disappeared and were sensitive to the sociality of nonlinguistic stimuli. Furthermore, these regions were more tightly connected to the social-semantic-processing areas than to the sentence-processing areas. Implications and Support The results indicate that the left vTPJ and lATL are not specific to language processing and contribute to language comprehension through social-semantic working memory. “Since the 1990s, it has been consistently observed that the left vTPJ and lATL are sensitive to sentence processing. Therefore, our findings were quite surprising,” said Prof. LIN, corresponding author of the study. These findings are likely to force a major reconsideration of the functional organization of the cortical language network, and they also make an important new contribution to the field of social neuroscience, according to a reviewer for Nature Human Behaviour. Reference: “A social-semantic working-memory account for two canonical language areas” by Guangyao Zhang, Yangwen Xu, Xiuyi Wang, Jixing Li, Weiting Shi, Yanchao Bi and Nan Lin, 21 September 2023, Nature Human Behaviour. DOI: 10.1038/s41562-023-01704-8 This study was supported by the National Natural Science Foundation of China, the Scientific Foundation of the Institute of Psychology, and the National Science and Technology Innovation 2030 Major Program.

The study shed new light on the process of memory recall. Recalling Memories Requires the Cooperation of Several Brain Regions When you have a memorable evening at a restaurant, more than just the food stays in your memory. A vivid memory of the evening is created by the smells, the décor, the music played by the band, the conversations, and several other elements. Later, bringing back just one of these impressions could be enough to relive the entire experience. According to recent research, complex memories in the brain are made up of a whole and its parts. The hippocampus, a part of the brain long thought to be the seat of memory, is where the general experience is kept, but the specific details are parsed and stored in a different part of the brain, the prefrontal cortex. In the future, this separation makes sure that exposure to any one cue will be enough to activate the prefrontal cortex, which will then access the hippocampus to remember the whole memory. Study Unveils Memory Recall Pathways Using Virtual Reality The research, which was published in Nature, sheds light on how the brain processes memories in different ways and offers new insight into how memories are recalled, which is a process that is less understood than memory storage. It has been challenging to study memory as a distributed brain process, in part due to technical limitations. Priya Rajasethupathy, a neuroscientist at Rockefeller University and her colleagues developed novel techniques to simultaneously record and manipulate neural activity from multiple brain areas as mice navigated multisensory experiences, encountering various sights, sounds, and smells while in an endless corridor in virtual reality. The researchers trained the mice to associate different rooms, which were composed of different combinations of the sensory cues, as rewarding or aversive experiences. Later on, nudged by a specific scent or sound, the mice were able to recall the broader experience and knew whether to happily expect sugar water or look out for an annoying puff of air. Distinct Pathways for Memory Formation and Recall The experiments demonstrated that while the entorhinal-hippocampal pathway, a well-studied circuit involving the hippocampus and its surrounding region, was essential for forming and storing the experiences, the individual sensory features were being shipped off to prefrontal neurons. Later, when mice encountered particular sensory features, a different circuit was engaged. This time, the prefrontal neurons communicated with the hippocampus to conjure the relevant global memory. “This suggests that there’s a dedicated pathway for memory recall, separate from memory formation,” says Nakul Yadav, the study’s first author and a graduate student co-mentored by Rajasethupathy and by Conor Liston, a neuroscientist at Weill Cornell Medicine. These findings have implications for the treatment of conditions such as Alzheimer’s disease, where the deficits are thought to be more related to memory recall than storage. The existence of separate storage and retrieval pathways in the brain suggests that targeting prefrontal recall pathways may be more therapeutically promising, Rajasethupathy says. Reference: “Prefrontal feature representations drive memory recall” by Nakul Yadav, Chelsea Noble, James E. Niemeyer, Andrea Terceros, Jonathan Victor, Conor Liston and Priyamvada Rajasethupathy, 13 July 2022, Nature. DOI: 10.1038/s41586-022-04936-2

Researchers have uncovered a significant relationship between sphingolipids and the memory of innate immune cells. This discovery opens up new treatment possibilities for diseases where the immune system is overly active, such as autoimmune disorders and cardiovascular diseases. The team found that manipulating sphingolipids in immune cells can either inhibit or stimulate their memory, with the protein acid ceramidase playing a pivotal role in this process. This breakthrough suggests new therapeutic approaches to balance the immune response. Credit: SciTechDaily.com Researchers at Radboud University Medical Center have discovered an intriguing link between sphingolipids, a mysterious type of fat named after the ‘Sphinx’, and the memory of cells in the innate immune system. This finding opens up exciting possibilities for creating novel therapies for a range of diseases, such as autoimmune conditions, cancer, cardiovascular diseases, and in the field of organ transplantation. The details of this breakthrough are detailed in a publication in Cell Reports. The innate immune system, crucial for defense against infections, plays a key role in various diseases involving the immune system. The researchers have demonstrated that sphingolipids can reprogram the memory of innate immune cells, offering new possibilities for treatment. The memory of innate immune cells, also known as trained immunity, enables these cells to respond stronger and faster during recurrent infections, a vital capability. However, in diseases where the innate immune system is overreactive, such as autoimmune diseases, cardiovascular diseases, and organ transplantations, this can have adverse effects. Understanding the molecular mechanisms behind this ‘memory’ is essential for developing new treatments for these diseases. Manipulating Innate Immune Memory with Fats An international research team led by Raphaël Duivenvoorden, together with researcher Nils Rother, discovered that sphingolipids play a crucial role in regulating trained immunity. Using nanoparticles containing sphingolipids, they demonstrated that these fats determine the induction of trained immunity. Some sphingolipids inhibited memory, while others stimulated it. What makes this discovery even more remarkable is that inhibiting the protein acid ceramidase, which regulates sphingolipid metabolism in cells, had the most potent effect on suppressing trained immunity. Rother states: “By inhibiting acid ceramidase, we can completely suppress the activation of trained immunity.” A New Target for Treatment These findings provide new insights into how trained immunity is regulated and offer a new target for the development of treatments for diseases involving trained immunity. Manipulating the sphingolipid balance in innate immune cells opens new possibilities for developing therapies that can restore the balance between effective defense and an overactive response. Reference: “Acid ceramidase regulates innate immune memory” by Nils Rother, Cansu Yanginlar, Geoffrey Prévot, Inge Jonkman, Maaike Jacobs, Mandy M.T. van Leent, Julia van Heck, Vasiliki Matzaraki, Anthony Azzun, Judit Morla-Folch, Anna Ranzenigo, William Wang, Roy van der Meel, Zahi A. Fayad, Niels P. Riksen, Luuk B. Hilbrands, Rik G.H. Lindeboom, Joost H.A. Martens, Michiel Vermeulen, Leo A.B. Joosten, Mihai G. Netea, Willem J.M. Mulder, Johan van der Vlag, Abraham J.P. Teunissen and Raphaël Duivenvoorden, 22 November 2023, Cell Reports. DOI: 10.1016/j.celrep.2023.113458

DVDV1551RTWW78V



Arch support insole OEM factory from Taiwan 》committed to helping you create value through custom manufacturingVietnam flexible graphene product manufacturing 》helping brands deliver comfort and performanceChina graphene product OEM service 》a manufacturing partner you can rely on for quality and delivery

限會員,要發表迴響,請先登入