Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Thailand ergonomic pillow OEM supplier
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Graphene sheet OEM supplier Taiwan
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Indonesia eco-friendly graphene material processing
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Customized sports insole ODM factory Taiwan
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Custom graphene foam processing factory Taiwan
An elephant, Loxodonta africana, throws dirt into the air in the tall grass of the savanna. Credit: Jeffrey T. Kerby A new meta-analysis across six continents establishes that large wild herbivores affect ecosystems in numerous important ways, from soils to vegetation to smaller animals, and promote ecosystem variability. For millions of years, a variety of large herbivores, or megafauna, influenced terrestrial ecosystems. Among many others, these included elephants in Europe, giant wombats in Australia, and ground sloths in South America. However, these animals experienced a wave of extinctions coinciding with the worldwide expansion of humans, leading to dramatic but still not fully understood changes in ecosystems. Even the survivors of these extinctions strongly declined, and many are currently threatened with extinction. While there are many case studies as well as theories about the effects of large animals, formal attempts to quantitatively synthesize their effects and establish generality have been lacking. A new study, conducted by an international team led by researchers from Aarhus University and the University of Göttingen, published in Nature Ecology & Evolution, has gathered numerous individual case studies and analyzed the findings. They show that large animals have a variety of generalizable impacts – impacts that are likely missing from most of today’s ecosystems. The impact of large animals on ecosystems Among the identified general impacts of large wild herbivores are shifts in soil and plant nutrients the promotion of open and semi-open vegetation the regulation of the population of smaller animals Moreover, one of the key findings of the studies is that megafauna promote ecosystem diversity by increasing the structural variability in the vegetation. “The positive impact on variability in vegetation structure is particularly noteworthy, given that environmental heterogeneity is known as a universal driver of biodiversity. While our study mostly looked at the impact of megafauna on small scales, our findings suggest that they promote biodiversity even on the landscape level,” says PhD student at Aarhus University Jonas Trepel, who led the study. Large herbivores change vegetation structure by consuming biomass, breaking woody plants, and trampling smaller plants – impacts that are hypothesized to depend on the animal’s body size. Given that the analyzed dataset spanned two magnitudes of body size (45-4500 kg), the researchers were able to test specifically how this important trait shapes the impact of large animals. They found, for example, that megafauna communities which include larger herbivores tend to have positive effects on local plant diversity, while communities composed of smaller species (e.g. <100 kg) tend to decrease local plant diversity. “Large herbivores can eat lower-quality food such as branches and stems, which may result in proportionally greater impacts on dominant plant species and thus give less competitive plants better odds in their struggle for sunlight and space,” explains Erick Lundgren, one of the senior authors of the study. Assistant professor Elizabeth le Roux, who is also one of the senior authors, adds: “These findings support the expectation that many small herbivores cannot fully compensate for the loss of a few large ones.” The benefits of a meta-analysis This study is a so-called meta-analysis. This means that the researchers have analyzed data from all available studies on the subject in order to find general patterns. Meta-analyses are especially powerful in their conclusions because they draw on big data pools and make it possible to draw conclusions that go beyond a local context. While many recent ecological studies have shown or hypothesized the importance of large animals in ecosystems, according to senior author Jens-Christian Svenning, the meta-analytical study is an important step forward by synthesizing direct experimental and semi-experimental evidence from across the globe to assess the generality of these effects quantitatively. “This global meta-analysis shows that large herbivores have important general effects on ecosystems and their biodiversity,” explains professor Jens-Christian Svenning, continuing: “Importantly, our analysis shows that these effects cut across a broad range of ecologically important phenomena, from soil conditions to vegetation structure to plant and animal species composition, affecting not only their general state but also their variation across landscapes.” Jens-Christian Svenning is the director of Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), a Danish National Research Foundation center of excellence at Aarhus University. How did the researchers get these results? A key aspect of the 297 studies, including 5,990 individual data points, is that the researchers compare adjacent areas with clear differences in the megafauna community (i.e. megafauna present or absent) due to known reasons. The vast majority of studies in the data set are so-called exclosure studies, in which some parts of a field site are fenced up to prevent large animals from entering. By comparing different plots inside and outside of the fences, researchers are then able to assess in which ways megafauna impact the ecosystem. Importance of ecosystem biodiversity in responding to global change The identified general importance of large herbivores for ecosystem functioning implies that important functions are missing due to the loss of wild megafauna. This may affect the approach to nature conservation and ecosystem restoration. “The majority of today’s protected areas are missing large animals – and thus also an important range of functions. So even areas we consider to be pristine ecosystems are probably not as natural as we may think. Reintroducing large animals could be a key avenue to make these areas a bit more dynamic and used to disturbances,” says Jonas Trepel and continues: “By increasing the structural variability in an ecosystem, large animals may provide refuges, for example during extreme weather events, but also open up more available niches for other species. This could prevent one or a few species from dominating and allows species with similar ecological attributes to coexist – which in turn would make the ecosystem more resilient. Ultimately, that may help them to deal with the consequences of global change.” Given the important functions that large animals have on ecosystems and their biodiversity, the researchers conclude that it is crucial to not just protect the few remaining megafauna species, but also to reestablish megafauna populations as part of restoration efforts to achieve positive outcomes for Earth’s biosphere, not least under the increasingly unprecedented global environmental conditions. Reference: “Meta-analysis shows that wild large herbivores shape ecosystem properties and promote spatial heterogeneity” by Jonas Trepel, Elizabeth le Roux, Andrew J. Abraham, Robert Buitenwerf, Johannes Kamp, Jeppe A. Kristensen, Melanie Tietje, Erick J. Lundgren and Jens-Christian Svenning, 9 February 2024, Nature Ecology & Evolution. DOI: 10.1038/s41559-024-02327-6
SpatialData unifies and integrates data from different spatial omics technologies. Credit: Isabel Romero Calvo/EMBL SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes are framed by the context they take place in. A new tool developed by the Stegle Group from EMBL Heidelberg and the German Cancer Research Centre (DKFZ) helps put molecular biology research findings in a better context of cellular surroundings, by integrating different forms of spatial data. In a tissue, every individual cell is surrounded by other cells, and they all constantly interact with each other to give rise to biological function. To understand how tissues work or malfunction in diseases such as cancer, it is crucial to not only learn the characteristics of every cell, but also account for their spatial context. Quantitative characterization of cells in the context of the physical space they inhabit is key to understanding complex systems. The technologies enabling these types of exploration are called spatial omics technologies, and their progressing development is contributing to the rise in popularity of spatial biology. Such technologies can give detailed information about the molecular makeup of individual cells and their spatial arrangement. However, these technologies focus on different characteristics of a cell – such as RNA or protein levels, and the resulting datasets are managed and stored in diverse ways. To solve this challenge, a collaborative project led by the Stegle Group developed SpatialData, a data standard and software framework that allows scientists to represent data from a wide range of spatial omics technologies in a unified manner. Technology Development for Spatial Biology Over the last decade, numerous technologies have been developed by both academia and industry for spatially visualizing tissues, cells, and subcellular compartments. However, each technique focuses on a small number of desirable characteristics and presents related trade-offs. For instance, Visium from 10x Genomics captures information about the expression of all genes in a tissue, but does not provide single-cell resolution. In contrast, the 10x Genomics Xenium assay, MERFISH, or the MERSCOPE platform from Vizgen yield fine-grained maps of gene expression with subcellular resolution. However, these assays are currently limited to a few hundred preselected genes. And the list of such technologies, each providing a small slice of the full picture, keeps growing. Challenges of Spatial Omics Technologies This heterogeneity of technologies is reflected on the computational side by an even greater heterogeneity of file formats: each technology comes with its own storage format, and often data generated by the same technology can be stored in multiple formats. Practically, this brings several challenges to the analysis of spatial omics data. Visualization and analysis methods are usually tailored to a specific technology, which limits data compatibility and makes it hard to integrate different methods into a single analysis pipeline. However, for a holistic understanding of a biological system, it’s important to simultaneously look at different cell characteristics or samples from different locations. Omics technologies generate enormous amounts of data (terabytes of images, millions of cells, billions of single molecules), demanding optimized engineering solutions. Hence, spatial biology urgently needs a universal framework that can integrate data across experiments and technologies, and provide holistic insights into health and disease. This is where SpatialData steps in. SpatialData – A Framework To Unite Them All “There is a strong need to establish community solutions for the management and storage of spatial omics data. In particular, there is a need to develop new data standards and computational foundations that allow for unifying analysis approaches across the full spectrum of different spatial omics technologies that are emerging,” said Oliver Stegle, Group Leader at EMBL in the Genome Biology Unit, and head of the Computational Genomics and Systems Genetics division at the German Cancer Research Center (DKFZ). “A first major step in this direction is SpatialData, a data standard and software framework that bridges and adapts previous data management concepts from single-cell multi-omics to the spatial domain.” SpatialData unifies and integrates data from different omics technologies, bridging state-of-the-art technologies with a framework that allows for computationally performant access and manipulation of the data. This tool was introduced in a recent Nature Methods publication, authored by Luca Marconato during his PhD at EMBL in the Stegle Group, a joint degree with the Faculty of Bioscience of the University of Heidelberg. “We developed the SpatialData framework to alleviate the data representation challenges when studying spatial biology, so that the researcher can focus on the biological analysis, rather than being slowed down by tedious data manipulations, otherwise required to even just visualize the data. The framework provides a unified representation and implements ergonomic operations for convenient processing of spatial omics data,” said Marconato. The tool enables any researcher to import their data and perform tasks like data representation, processing, and visualization. Additionally, it gives the option to interactively annotate the data, and save it in a language-agnostic format, facilitating the emergence of analysis strategies that combine methods from different programming languages or analysis communities. The framework has been developed as a collaborative project between multiple institutions such as the DKFZ, the Technical University of Munich, the Helmholtz Centre Munich, German BioImaging, the ETH Zürich, VIB Center for Inflammation Research in Belgium, as well as the Huber and Saka groups at EMBL. “We have conducted our research and technological development keeping the benefit for the bigger science community in mind”, said Giovanni Palla, co-first author and PhD student at the Helmholtz Centre Munich. “We not only established an interdisciplinary collaboration project between research institutes but also worked closely with developers working with different spatial technologies and in different programming languages to address the problem of interoperability. As a result, our framework is compatible with the vast majority of spatial omics assays from academia and industry. Being published openly, other researchers can now freely use SpatialData to manage their own data and have the opportunity to collaborate across various technologies and research topics.” “In our paper, we illustrate three important features of SpatialData,” explained Kevin Yamauchi, co-first author and a postdoctoral researcher at ETH Zürich. “First, we present a standardized interface and unified storage format (based on the OME-NGFF) for all spatial omics technologies. Second, using the unified representation, we integrate signals from multiple modalities. Here, we transfer annotations across modalities and quantify signals using these transferred annotations. Finally, we present a way to interactively annotate (pathology) images and use the annotations to analyze the associated molecular profiles.” SpatialData provides an interactive representation of data, both on your hard drive and your computer’s RAM, which enables the analysis of large imaging data or multiple geometries or cells. Another prominent key feature is the framework’s ability to align and annotate omics data in a common coordinate system. Thus, SpatialData enables the efficient management and manipulation of spatial datasets, including the definition of a common coordinate system across sequencing- and imaging-based technologies. Application in Breast Cancer The interdisciplinary team used the SpatialData framework to reanalyze a multimodal breast cancer dataset from 10X Genomics as a proof of concept. This dataset comprises consecutive sections of the same breast cancer block, where each section is analyzed using different technology, like Visium, Xenium, and a separate scRNA-seq dataset. The study demonstrates the complementary nature of these technologies. “By integrating 10X Xenium and scRNAseq, we mapped the cell types into the space,” said Elyas Heidari, a PhD candidate at DKFZ and one of the authors of the study. “Next, we used 10X Visium to identify cancer clones in space. This can be done because we have transcriptome-wide readouts. Finally, we used the H&E stained microscopy images to identify regions of interest for histopathology annotations. This analysis successfully showcased a unique application of SpatialData in unlocking multi-modal analyses of spatially-resolved datasets.” In the future, a patient’s tumor might be analyzed with different technologies commonly used in the clinic, with the data then unified bySpatialData to gain a holistic understanding of the tumor. Furthermore, the interactive interface would allow the doctor to annotate the data, thus enabling detailed analysis of specific tumor regions and characteristics, potentially leading to personalized treatment approaches. Reference: “SpatialData: an open and universal data framework for spatial omics” by Luca Marconato, Giovanni Palla, Kevin A. Yamauchi, Isaac Virshup, Elyas Heidari, Tim Treis, Wouter-Michiel Vierdag, Marcella Toth, Sonja Stockhaus, Rahul B. Shrestha, Benjamin Rombaut, Lotte Pollaris, Laurens Lehner, Harald Vöhringer, Ilia Kats, Yvan Saeys, Sinem K. Saka, Wolfgang Huber, Moritz Gerstung, Josh Moore, Fabian J. Theis and Oliver Stegle, 20 March 2024, Nature Methods. DOI: 10.1038/s41592-024-02212-x
A live male specimen of the new species of deep-sea worm, named Pectinereis strickrotti after the lead Alvin pilot, Bruce Strickrott of WHOI who helped discover it. Its feathery appendages are called parapodia and carry the worm’s gills. Credit: Ekin Tilic The discovery of this creature increases the total count of new species identified by researchers exploring these seemingly inhospitable ecosystems to 48. Greg Rouse, a marine biologist at UC San Diego’s Scripps Institution of Oceanography, and other researchers have identified a previously unknown species of deep-sea worm residing near a methane seep located approximately 50 kilometers (30 miles) away from Costa Rica’s Pacific coast. Rouse, curator of the Scripps Benthic Invertebrate Collection, co-authored a study describing the new species in the journal PLOS ONE. The worm, named Pectinereis strickrotti, has an elongated body that is flanked by a row of feathery, gill-tipped appendages called parapodia on either side, and Rouse said its sinuous swimming reminded him of a snake. The species was named after Woods Hole Oceanographic Institution’s Bruce Strickrott, lead pilot for the famed deep-sea submersible Alvin, who Rouse said was instrumental in the effort to locate and collect the creature. The research was supported by the National Science Foundation. Exploring Costa Rican Methane Seeps Rouse and his colleagues have encountered roughly 450 species at the Costa Rican methane seeps since 2009, with this latest discovery bringing the number of those species that were new to science to 48. These impressive stats underscore how much more there is left to learn about these ecosystems as well as their biological importance, said Rouse. Methane seeps are parts of the seafloor where the powerful greenhouse gas methane escapes from rocks or sediment on the seafloor in the form of bubbles. Unlike deep-sea hydrothermal vents, methane seeps are typically not hotter than the surrounding water. But like hydrothermal vents, methane seep ecosystems are fueled by chemical energy rather than sunlight. This is because some microbes have evolved the ability to consume methane. The microbes that can make methane into food create the base of a food web that at the Costa Rican seeps is dominated by mussels, crabs, and soft-bodied polychaete worms like this new species, said Rouse. The Discovery Journey Strickrott and Rouse first encountered the new species in 2009 at a depth of around 1,000 meters (3,280 feet) during a dive in the Alvin human-occupied submersible, which is operated by the Woods Hole Oceanographic Institution and owned by the U.S. Navy. “We saw two worms near each other about a sub’s length away swimming just off the bottom,” said Strickrott. “We couldn’t see them well and tried to creep in for a closer look, but it’s hard to creep in a submarine and we spooked them.” Finally, in 2018 the team was able to return to Costa Rica’s methane seeps with Alvin. On a dive to the same spot the worm was first sighted, known as Mound 12, Strickrott was astounded to encounter six or more individuals of the unidentified species they first saw there nearly a decade earlier. For some reason, the worms were much less skittish than they were in 2009 and, using a five-chambered vacuum canister device on Alvin that Strickrott calls the “slurp gun,” they carefully collected several specimens as well as images and video – enough to formally describe what proved to be a new species. “The way this thing moved was so graceful, I thought it looked like a living magic carpet,” said Strickrott. “I’m honored that Greg [Rouse] saw fit to name this species after me, it means a lot.” Unique Characteristics of Pectinereis strickrotti Pectinereis strickrotti is a 10-centimeter-long (4-inch) member of the ragworm family (Nereididae). Ragworms are a group of around 500 species of segmented, mostly-marine worms that look a bit like a cross between a centipede and an earthworm. They have elongated bodies with rows of bristled parapodia on their sides and a hidden set of pincer-shaped jaws that can be extruded for feeding. Many species of ragworm also have two distinct life stages: atoke and epitoke. In these species, the worm spends most of its life on the seafloor, often in a burrow, as a sexually immature atoke, but in their life’s final act, they transform into sexually mature epitokes that swim up off the bottom into the water column to find mates and spawn. The team was able to collect three male Pectinereis strickrotti epitokes and part of one female. Following their successful collection, the team used the specimens to conduct anatomical analysis and to study the worm’s DNA to establish its evolutionary relationships within the ragworm family. The specimens now reside in Scripps’ Benthic Invertebrate Collection and the Museo de Zoología at the Universidad de Costa Rica. Compared to most ragworms, Pectinereis strickrotti is unusual in several ways. First, it lives in the deep sea, while the majority of its evolutionary kin inhabit shallower waters. Second, its parapodia are covered in gills, while most ragworms absorb oxygen through their parapodia without the aid of true gills. The males had large spines at the end of their tails, which Rouse said might have something to do with reproduction but would require further study. Finally, owing to the total darkness at 1,000 meters (3,280 feet) under the sea, the new species is blind. Rouse said the worms probably have keen senses of smell and touch to help them navigate their inky world. Pectinereis strickrotti has robust, even fearsome-looking jaws, but Rouse said their diet is still unknown and that the species could just as easily be feeding on bacteria as larger fare like other worms. Though its coloration would be a moot point in life, given its pitch-black habitat, Rouse said the worm appeared rosy under Alvin’s lights, and that this was probably due to the color of its blood. “We’ve spent years trying to name and describe the biodiversity of the deep sea,” said Rouse. “At this point, we have found more new species than we have time to name and describe. It just shows how much undiscovered biodiversity is out there. We need to keep exploring the deep sea and to protect it.” Rouse and other Scripps researchers will be heading back out to sea later this year in hopes of making even more deep-sea discoveries at methane seeps off the coasts of Alaska and Chile. Reference: “A remarkable new deep-sea nereidid (Annelida: Nereididae) with gills” by Tulio F. Villalobos-Guerrero, Sonja Huč, Ekin Tilic, Avery S. Hiley and Greg W. Rouse, 6 March 2024, PLOS ONE. DOI: 10.1371/journal.pone.0297961 In addition to Rouse, Sonja Huč, Avery Hiley, and Ekin Tilic of Scripps contributed to the study. Tulio Villalobos-Guerrero of the Centro de Investigación Científica y de Educación Superior de Ensenada is the study’s first author and conducted the primary anatomical analysis.
DVDV1551RTWW78V
Eco-friendly pillow OEM manufacturer Taiwan 》perfect for brands looking to scale with low-MOQ flexibilityVietnam anti-odor insole OEM service 》long-term production solutions with flexible volumeVietnam graphene material ODM solution 》performance-first thinking from development to delivery
下一則: One-stop OEM/ODM manufacturing factory and solutio
限會員,要發表迴響,請先登入

