Contents ...
udn網路城邦
Indonesia sustainable material ODM solutions 》comm
2025/04/23 20:55
瀏覽17
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Graphene insole OEM factory China

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.ODM service for ergonomic pillows Thailand

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Insole ODM factory in Vietnam

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.ODM service for ergonomic pillows China

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Custom foam pillow OEM production factory in Taiwan

A study uncovered mummified mice on high-elevation Andean volcanoes, revealing that mammals can survive in extreme, Mars-like conditions. This finding challenges our understanding of vertebrate life’s physiological limits and prompts further research into these mice’s survival mechanisms. The barren, wind-blasted peaks of volcanoes in the Puna de Atacama, straddling Chile and Argentina, bear a striking resemblance to the Martian surface, characterized by a sparse atmosphere and frigid conditions. Situated at staggering heights exceeding 6,000 meters, these summits were previously thought to be inhospitable for mammalian existence. However, a study recently published in the journal Current Biology presents a groundbreaking discovery: mummified mice found in these harsh landscapes, pushing the known boundaries of vertebrate survival on our planet. “The most surprising thing about our discovery is that mammals could be living on the summits of volcanoes in such an inhospitable, Mars-like environment,” says senior author Jay Storz, a biologist at the University of Nebraska, Lincoln. “Well-trained mountain climbers can tolerate such extreme elevations during a one-day summit attempt, but the fact that mice are actually living at such elevations demonstrates that we have underestimated the physiological tolerances of small mammals.” This photograph shows a member of a species of leaf-eared mouse called Phyllotis vaccarum. Credit: Marcial Quiroga-Carmona Storz and his colleagues discovered the first mouse mummy on the summit of Volcán Salín by chance when they stumbled across the desiccated cadaver at the edge of a rock pile. But, now knowing what to look for, they soon turned up others. “Once my climbing partner and I started searching through the rest of the rocks, we found seven more mummies on the same summit,” Storz recalls. They then started searching systematically on the summits of all the Andean volcanoes. So far, they’ve searched 21 volcano summits, including 18 with elevations over 6,000 meters. All told, they’ve found 13 mummified mice on the summits of multiple volcanoes with an elevation greater than 6,000 meters. In some cases, the mummies were accompanied by skeletal remains of numerous other mice. Video showing the site where 4 mummies were excavated from a site on the summit of Volcán Púlar (6,233 m), Chile. Credit: Jay Storz Radiocarbon Dating and Genetic Analysis Radiocarbon dating showed that the mummified mice found on the summits of two volcanoes were a few decades old at most. Those from a third site were older, estimated at 350 years old at most. Genetic analysis of the summit mummies demonstrated that they represent a species of leaf-eared mouse called Phyllotis vaccarum, which is known to occur at lower elevations in the region. “The discovery of the mouse mummies on the summits of these freezing, wind-scoured volcano summits was a huge surprise,” Storz says. “In combination with our live-capture records of mice on the summits and flanks of other high-elevation Andean volcanoes, we are amassing more and more evidence that there are long-term resident populations of mice living at extreme elevations.” This photograph shows a member of the research team at the summit of Ojos del Salado, 6,893 m (Puna de Atacama, Chile-Argentina). Credit: Mario Pérez Mamani Exploring the Mysteries of High-Altitude Mammalian Life The finding now raises important questions, including how mammals can live in a barren world of rock, ice, and snow where the temperatures are never above freezing, and there is roughly half the oxygen available at sea level. It’s not clear why the mice would have climbed to such heights. Over 500 years ago, Incas were known to conduct human and animal sacrifices on the summits of some Andean peaks. However, the researchers note that the mummified mice from the volcano summits couldn’t have been transported there by the Incas, given that none are old enough to have co-existed with them. In ongoing work, the researchers are investigating whether the high-elevation mice have special physiological traits that enable them to survive and function in low-oxygen conditions. They’re conducting physiological experiments on captive mice that were collected from high elevations to find out. They’re also continuing their mountaineering surveys of small mammals on high Andean peaks in Argentina, Bolivia, and Chile. “With our mountaineering biological surveys in the Andes, we keep making surprising new discoveries about the ecology of extreme high-elevation environments,” Storz says. Reference: “Genomic insights into the mystery of mouse mummies on the summits of Atacama volcanoes” by Jay F. Storz, Schuyler Liphardt, Marcial Quiroga-Carmona, Naim M. Bautista, Juan C. Opazo, Timothy B. Wheeler, Guillermo D’Elía and Jeffrey M. Good, 23 October 2023, Current Biology. DOI: 10.1016/j.cub.2023.08.081 This work was funded by grants from the National Institutes of Health, the National Science Foundation, the Geographic Society, and FONDECYT.

Researchers found that Botox can unveil the brain’s inner workings, showing that feedback from individual nerve cells controls dopamine release, a neurotransmitter crucial for motivation, memory, and movement. In addition to smoothing out wrinkles, researchers have found that the drug Botox can reveal the inner workings of the brain. A new study used it to show that feedback from individual nerve cells controls the release of dopamine, a chemical messenger involved in motivation, memory, and movement. Such “self-regulation,” the researchers say, stands in contrast to the widely held view that the release of dopamine — known as the “feel good” hormone — by any cell relied on messages from nearby cells to recognize that it is releasing too much of the hormone. Led by researchers at NYU Grossman School of Medicine, the new study showed that dopamine-releasing brain cells respond to their own signals to regulate the hormone’s output. Because the death of dopamine-releasing brain cells is a key factor in Parkinson’s disease, the new findings provide insight into why these cells die in the movement disorder, the researchers say. “Our findings provide the first evidence that dopamine neurons regulate themselves in the brain,” says study lead author Takuya Hikima, PhD. “Now that we better understand how these cells behave when they are healthy, we can start to unravel why they break down in neurodegenerative disorders like Parkinson’s disease,” adds Hikima, an instructor in the Department of Neurosurgery at NYU Langone Health. Hikima says their study was prompted by what the research team saw as flaws in the older way of thinking about how dopamine works. First, for one cell to control its neighbor with dopamine, a large number of synapses, or junctions where two cells meet and exchange messages, would be required. Yet researchers say there were not enough synapses to account for this. Second, many types of hormone-producing cells in the body use a streamlined system that self-regulates further release, so it seemed odd that dopamine neurons would use a more roundabout process. For the study, published rcently in the journal Cell Reports, the research team collected dopamine neurons from dozens of mice. They injected some of the brain cells with Botox, a toxin that blocks nerve cells from sending chemical messages to neurons and other cells. The chemical’s nerve-blocking action accounts for its ability to relax muscles in migraine and wrinkle treatments. By injecting Botox into single neurons, says Hikima, the researchers hoped to show whether any signal to continue or stop dopamine release could only come from outside the “paralyzed” cell. If the neurons were in fact controlled by neighboring dopamine cells, then dopamine release would remain unaffected because the treated cells would still receive dopamine signals from the untreated cells nearby. Instead, the findings revealed a 75 percent drop in dopamine outflow, suggesting that dopamine neurons largely rely on their own discharge to determine the release rate of the hormone, according to the investigators. “Since our Botox technique helped us solve the problem of how dopamine neurons regulate their communication, it should also enable us to uncover how other nerve cells interact with each other in the mammalian brain,” says study senior author Margaret Rice, PhD. The research team next plans to explore other areas of dopamine neuron activity that remain poorly understood, such as the dependence of dopamine release on calcium from outside the brain cells, says Rice, a professor in the Departments of Neurosurgery and Neuroscience and Physiology at NYU Langone. The investigators also intend to examine how self-regulation of dopamine might contribute to cell death in Parkinson’s disease. Reference: “Activity-dependent somatodendritic dopamine release in the substantia nigra autoinhibits the releasing neuron” by Takuya Hikima, Christian R. Lee and Paul Witkovsky, 6 April 2021, Cell Reports. DOI: 10.1016/j.celrep.2021.108951 Funding for the study was provided by National Institute of Health grants R01 DA038616 and R01AI093504 and by the Marlene and Paolo Fresco Institute for Parkinson’s Disease and Movement Disorders. In addition to Hikima and Rice, other NYU Langone researchers include Christian Lee, PhD; Paul Witkovsky, PhD; Julia Chesler, PhD; and Konstantin Ichtchenko, PhD.

A new study shows that brain connectivity undergoes a dramatic reorganization at birth, with regional differences and critical roles for networks like the subcortical hub. This research highlights key aspects of early development and its potential links to environmental factors. New research explores the developmental trajectory of global functional neural networks before and after birth. A study recently published in the journal PLOS Biology, led by Lanxin Ji and Moriah Thomason from New York University School of Medicine, reveals that brain-imaging data from fetuses and infants shows a rapid increase in functional connectivity between brain regions on a global scale at birth. This surge may reflect neural processes that enable the brain to adapt to the external environment. Understanding the sequence and timing of brain functional network development at the beginning of human life is critical. Yet many questions remain regarding how human brain functional networks emerge and develop during the birth transition. To fill this knowledge gap, Thomason and colleagues leveraged a large functional magnetic resonance imaging dataset to model developmental trajectories of brain functional networks spanning 25 to 55 weeks of post-conceptual gestational age. The final sample included 126 fetal scans and 58 infant scans from 140 subjects. Regional Differences in Brain Connectivity The researchers observed distinct growth patterns in different regions, showing that neural changes accompanying the birth transition are not uniform across the brain. Some areas exhibited minimal changes in resting-state functional connectivity (RSFC) — correlations between blood oxygen level-dependent signals between brain regions when no explicit task is being performed. But other areas showed dramatic changes in RSFC at birth. The subcortical network, sensorimotor network, and superior frontal network stand out as regions that undergo rapid reorganization during this developmental stage. Subcortical Network as a Communication Hub Additional analysis highlighted the subcortical network as the only region that exhibited a significant increase in communication efficiency within neighboring nodes. The subcortical network represents a central hub, relaying nearly all incoming and outgoing information to and from the cortex and mediating communication between cortical areas. On the other hand, there was a gradual increase in global efficiency in sensorimotor and parietal-frontal regions throughout the fetal to neonatal period, possibly reflecting the establishment or strengthening of connections as well as the elimination of redundant connections. According to the authors, this work unveils fundamental aspects of early brain development and lays the foundation for future research on the influence of environmental factors on this process. In particular, further studies could reveal how factors such as sex, prematurity, and prenatal adversity interact with the timing and growth patterns of children’s brain network development. The authors add, “This study for the first time documents the significant change of brain functional networks over the birth transition. We observe that growth patterns are regionally specific, with some areas of the functional connectome showing minimal changes, while others exhibit a dramatic increase at birth.” Reference: “Trajectories of human brain functional connectome maturation across the birth transition” by Lanxin Ji, Iris Menu, Amyn Majbri, Tanya Bhatia, Christopher J. Trentacosta and Moriah E. Thomason, 19 November 2024, PLOS Biology. DOI: 10.1371/journal.pbio.3002909

DVDV1551RTWW78V



Innovative pillow ODM solution in Indonesia 》craftsmanship meets efficiency for maximum valueCustom foam pillow OEM in Indonesia 》dedicated to product consistency, material innovation, and fast lead timeTaiwan pillow ODM development service 》trusted by clients across wellness, footwear, and bedding industries

限會員,要發表迴響,請先登入