Contents ...
udn網路城邦
Innovative pillow ODM solution in Indonesia 》craft
2025/04/23 20:36
瀏覽16
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

One-stop OEM/ODM solution provider China

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.ODM pillow for sleep brands China

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Innovative insole ODM solutions in Taiwan

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Private label insole and pillow OEM Thailand

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Vietnam athletic insole OEM supplier

A new study reveals that critical proteins for nerve signaling, particularly potassium ion channels from the Shaker family, predated the evolution of the nervous system, existing in early single-celled organisms. This challenges previous notions of their evolutionary timeline and suggests foundational elements of the nervous system were established earlier than thought. A new study reveals that certain ion channels existed before the earliest common ancestor of animals. A recent study has rewritten the conventionally understood evolutionary history of key proteins essential for electrical signaling in the nervous system. Conducted by researchers at Penn State, the study reveals that the well-known family of proteins—potassium ion channels in the Shaker family—existed in microscopic single-celled organisms long before the common ancestor of all animals. This suggests that, rather than evolving alongside the nervous system as previously thought, these ion channels were present before the origin of the nervous system. The study appeared in the Proceedings of the National Academy of Sciences. “We tend to think of evolution as a one-way march toward greater and greater complexity, but that often isn’t what occurs in the natural world,” said Timothy Jegla, associate professor of biology in the Penn State Eberly College of Science and leader of the research team. “For example, it was thought that as different kinds of animals evolved and the nervous system became more complex, ion channels arose and diversified to match that complexity. But our research suggests that this is not the case. We have previously shown that the oldest living animals, those with simple nerve nets, have the highest ion channel diversity. This new finding adds to growing evidence that many of the building blocks for the nervous system were already in place in our protozoan ancestors — before the nervous system even existed.” Understanding Ion Channels Ion channels are located in the membranes of cells and regulate how charged particles called ions move in and out of the cell, a process that results in the electrical signals that are the foundation of communication in the nervous system. The Shaker family of ion channels is found in a large range of animals, from humans to mice and fruit flies, and specifically regulates how potassium ions flow out of the cell to terminate electrical signals called action potentials. These channels can open or close based on changes in the electric field, much like transistors in computer chips. “Much of what we know about how ion channels work on a molecular level comes from mechanistic studies of the Shaker family of ion channels,” Jegla said. “We previously thought that the Shaker family of voltage-gated potassium channels were only found in animals, but now we see that the genes that code for this family of ion channels were present in several species of the closest living relatives of animals, a group of single-cell organisms called choanoflagellates.” The researchers had previously looked for these genes in two species of choanoflagellates but failed to find them. In the current study, they expanded their search to 21 choanoflagellate species and found evidence of Shaker family genes in three of these species. Evolution of Ion Channel Types Several subfamilies, or types, of ion channels within the Shaker family, are present across the animal kingdom. The research team previously found that comb jellies — animals with a comparatively simple “nerve nets” (that are) thought to be similar to the very first animal nervous systems— have only one of these types, called Kv1. This led the team to believe that the common ancestor of animals likely had only Kv1, with other types evolving later. However, Jegla and colleagues found that the Shaker family genes in choanoflagellates were more closely related to types Kv2, Kv3, and Kv4. “We thought types 2 through 4 were thought to have evolved on a more recent timeline, but our new work suggests that the Kv2-4–like channels found in choanoflagellates are actually the oldest subtype,” Jegla said. Additionally, this finding indicates that multiple subtypes were present at the base of the animal family tree, including Kv1, which are found in comb jellies, and the Kv2-4–like channels, which are found in choanoflagellates. “The genes for Kv2-4–like were lost in the living descendants of the earliest animal groups like comb jellies and sponges, so the only reason we know that they were present in the earliest animals is thanks to the choanoflagellates,” Jegla added. “Gene loss is really common in evolution — about as common as the evolution of new genes — though it can be hard to detect. Now that genetic sequencing is cheap enough that scientists can broadly sample species, rather than looking at just a few representative species, we can detect a lot more of these gene losses and that will change our views of how many of our own gene families first evolved.” This work also adds to growing evidence that many elements of the nervous system were present before the nervous system as a whole evolved, Jegla noted. “Most of the functionally important proteins that we use in electrical signaling, which underlie neuronal communication and neuromuscular movement, are all based on proteins that existed before animals,” Jegla said. “It seems that animals were able to cobble together a functioning nervous system very early in their evolution simply because most of the necessary proteins were already there.” Jegla added that understanding how these ion channels evolved helps us understand how they function and that in turn may have implications for the treatment of disorders related to ion channel dysfunction, such as heart arrhythmias and epilepsy. Reference: “A broad survey of choanoflagellates revises the evolutionary history of the Shaker family of voltage-gated K+ channels in animals” by Timothy Jegla, Benjamin T. Simonson and J. David Spafford, 17 July 2024, Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.2407461121 In addition to Jegla, the research team includes Benjamin Simonson, graduate student in the molecular, cellular and integrative biosciences program in the Huck Institutes of the Life Sciences and the Eberly College of Science at Penn State who recently defended his dissertation, and David Spafford, associate professor of biology at the University of Waterloo who specializes in choanoflagellate physiology. Funding from the Penn State Department of Biology and the Huck Institutes of the Life Sciences supported this work.

Researchers from the University of Pennsylvania have discovered that extremophilic bacteria from high-temperature marine environments can be used to reduce asbestos toxicity. The thermophilic bacterium Deferrisoma palaeochoriense removes iron from asbestos minerals, which has been identified as a major component driving asbestos toxicity. Another thermophilic bacterium, Thermovibrio ammonificans, can remove silicon and magnesium from asbestos, disrupting its fibrous structure. Researchers have found that certain extremophilic bacteria can reduce asbestos toxicity by removing iron, silicon, and magnesium from asbestos minerals. Further analysis is required to optimize treatment methods for detoxification and potential reuse. Asbestos materials were once widely used in homes, buildings, automobile brakes, and many other built materials due to their strength and resistance to heat and fire, as well as to their low electrical conductivity. Unfortunately, asbestos exposure through inhalation of small fiber particles has been shown to be highly carcinogenic.  Now, for the first time, researchers from the University of Pennsylvania have shown that extremophilic bacteria from high-temperature marine environments can be used to reduce asbestos’ toxicity. The research will be published today (May 15) in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.  Iron Removal with Deferrisoma palaeochoriense Much of their research has focused on the use of the thermophilic bacterium Deferrisoma palaeochoriense to remove iron from asbestos minerals through anaerobic respiration of that iron. “Iron has been identified as a major component driving the toxicity of asbestos minerals and its removal from asbestos minerals has been shown to decrease their toxic properties,” said Ileana Pérez-Rodríguez, Ph.D., Assistant Professor of Earth and Environmental Science at the University of Pennsylvania.  D. palaeochoriense has also been shown to mediate transfer of electrical charge within the iron contained in asbestos, without changing its mineral structure. Doing so might enhance asbestos’ electrical conductivity, said Pérez-Rodríguez. Based on this observation, the bacterium could be used to treat asbestos’ toxicity through iron removal. Alternatively, the new properties of electrical conductivity could enable reuse of treated asbestos for that purpose.   Silicon and Magnesium Removal with Thermovibrio ammonificans As with iron, the fibrous silicate structures of asbestos are also carcinogenic. Removal of silicon and magnesium from asbestos has been shown to disrupt its fibrous structure. The investigators tested the ability of the thermophilic bacterium Thermovibrio ammonificans to remove these elements from asbestos minerals by accumulating silicon in its biomass in a process known as biosilicification.   T. ammonificans accumulated silicon in its biomass when in the presence of “serpentine” asbestos, which has curly fibers, but not while growing in the presence of “amphibole” asbestos, which has straight fibers, said Pérez-Rodríguez. This difference, along with the varying amounts and types of elements released during microbe-mineral interactions with different types of asbestos “highlights the difficulty of approaching asbestos treatments as a one-size-fits-all solution, given the unique chemical compositions and crystal structures associated with each asbestos mineral,” Pérez-Rodríguez said.  Overall, these experiments promoted the removal of iron, silicon and/or magnesium for the detoxification of asbestos in a superior manner as compared to other biologically mediated detoxification of asbestos, such as via fungi, said Pérez-Rodríguez. However, further analysis will be required to optimize asbestos treatments to determine the most practical methods for the detoxification and/or reuse of asbestos as secondary raw materials. Reference: “Microbe-Mineral Interactions between Asbestos and Thermophilic Chemolithoautotrophic Anaerobes” by Jessica K. Choi, Ruggero Vigliaturo, Reto Gieré and Ileana Pérez-Rodríguez, 15 May 2023, Applied and Environmental Microbiology. DOI: 10.1128/aem.02048-22

Brachiopod fossils from a prehistoric mass extinction offer us insights into biodiversity and evolution. “These are times of major changes in the environment, and how those changes impact the organisms is relevant to understanding our current environment and environmental changes.” During periods of environmental disturbance, how do communities of organisms react? If entire species become extinct, do the remaining species move in to occupy the vacant areas, or do new species come in to fill the void? Sarah Brisson, a Ph.D. student in the Department of Earth Sciences at UConn, aimed to investigate these questions. The results of her research have been published in the Proceedings of the Royal Society B. Brisson studies a mass extinction event that happened in the Late Devonian period, around 370 million years ago, with the goal of understanding how ecosystems and the communities of organisms within them respond. For this study, Brisson focused on small, shelled, ocean-dwelling creatures called brachiopods by studying fossils collected from the Appalachian Basin in New York and Pennsylvania. “The name ‘mass extinction events’ captures people’s attention. These are times of major changes in the environment, and how those changes impact the organisms is relevant to understanding our current environment and environmental changes,” says Brisson. In the Late Devonian, the Appalachian Basin was a shallow sea that formed in the wake of the growing mountains. Brisson says the seafloor was likely covered with brachiopods, which were abundant in the sample set. In the water, fish were also becoming more abundant, and on land, a great greening was happening, with new plants evolving for the first time in Earth’s history. “The Devonian world was very different; there were no flowering plants for millions of years. We’re just setting the stage to move into the Mesozoic — the dinosaur era — where we have big ferns and large, woody trees,” Brisson says. In studying these ecosystem dynamics, Brisson looks at Earth as a system, with niche changes as just one aspect of the entire structure. “A niche space is an environment where an organism lives, in this case, the level of substrate disturbance and where along the depth profile the organisms most comfortable with,” says Brisson. Two concepts to consider are niche conservatism and niche evolution. Brisson explains that with niche conservatism, organisms remain in place and retain their characteristics, whereas with niche evolution organisms change and evolve in some way into preferring the new environmental parameters through time. “In biology, there’s a lot of talk about niche dynamics, and whether we see niche evolution or niche conservatism and there are not as many researchers studying this in deep time,” says Brisson. Niche Conservatism Amid Extinction After painstakingly identifying around 20,000 brachiopod fossils and analyzing their preferences across the depth gradient, Brisson assembled a dataset and used non-metric multi-dimensional scaling (nMDS) to see where different species were grouped across the stratigraphic range over time to interpret how the organisms responded before and after the mass extinction event. Brisson says the results were a bit of a surprise. “I saw a lot of turnover where some species went extinct, but some species survived and remained in place, and their niches are conserved. Some scientists argue this isn’t the case in a large-scale extinction event and I didn’t expect that niche conservatism would be shown here.” In extinction events like this one, where an estimated 35% of marine species went extinct, Brisson explains it is expected that the opening of so many niches would encourage nearby surviving species to move in to occupy the newly free space, and the results did show this happening to some extent. “As a rule, however, we’re seeing niche conservatism in this region. In cases where you might see niche evolution in the rock record, there may have been different pressures on the organisms. I think leaving that question open is important because there are many different selective pressures and not all selective pressures can be applied to every situation.” Possible Drivers of the Late Devonian Extinction The factors that drove the extinction pulses in the Late Devonian are still debated, says Brisson. Some work, including co-author and UConn graduate Jaleigh Pier’s ’18 (CLAS) research, indicated a global cooling event took place. Other evidence shows widespread anoxia which could have resulted from an influx of nutrients, much like we see today with dead zones forming in offshore marine and aquatic environments. “Part of the reason why I love the Devonian is that there are mass extinction events that have been studied so thoroughly, especially the Mesozoic mass extinction event, but there’s less certainty surrounding the Late Devonian. As you’re moving back through time, it’s harder to be certain because some of the proxies used in the Mesozoic don’t apply to the Devonian. It’s a neat and dynamic time to study.” This work represents just one chapter of Brisson’s dissertation, and future analyses will look at the data further, including stable isotope analysis to understand how nitrogen may have impacted this region. Peering this far into the past may shed light on the accelerating species extinctions of today. “I do foresee using this method for future studies because it’s a powerful tool for understanding what our ecosystems looked like in the past. It’s really fascinating to take these biological concepts and apply them back through time.” Reference: “Niche conservatism and ecological change during the Late Devonian mass extinction” by Sarah K. Brisson, Jaleigh Q. Pier, J. Andrew Beard, Anjali M. Fernandes and Andrew M. Bush, 5 April 2023, Proceedings of the Royal Society B: Biological Sciences. DOI: 10.1098/rspb.2022.2524

DVDV1551RTWW78V



Orthopedic pillow OEM solutions Indonesia 》tailored support for growing product linesVietnam pillow ODM development service 》your competitive edge in product performance and speedCustom foam pillow OEM in Indonesia 》dedicated to product consistency, material innovation, and fast lead time

限會員,要發表迴響,請先登入