Contents ...
udn網路城邦
自由電子
2017/12/14 10:55
瀏覽605
迴響2
推薦0
引用0

Chap. 6 Free Electron

完全不受拘束的電子(滿足Pauli principle)

  1. Heat capacity of metal

  2. Electrical conductivity

  3. Cyclotron

  4. Hall effect

  5. Thermal conductivity

電子貢獻,假設所有電子都有貢獻

U=3(kT/2)N=3kTN/2, CV= 3kN/2=0.54 joul/gK

experimental value CV=1.23 joul/gK

phonon 貢獻 CV=3NkB=1.08 joul/gK

所以free electron貢獻 CV=1.23 – 1.08 = 0.15 joul/gK, 0.54相差太多

Energy level of free electron gas:

Consider a free electron in 1-D Hψ=Eψ, H=P²/2m=(-²/2m)d²/dx²

P=-j=-jℏ∙d/dx, (-²/2m)d²ψ/dx²= boundary condition ψ(0)=ψ(L)=0

ψ=Acoscx+Bsincx, ψ(0)=0 A=0, ψ(L)=0 BsincL=0, cL=nπ c=nπ/L n=1,2,3,…

(-²/2m)d²ψ/dx²=(-²/2m)d²[Bsin(nπx/L)]/dx²=(-²/2m)∙-(nπ/L)²Bsin(nπx/L)=

Eₙ=ℏ²/2m∙(nπ/L)², ψ=Bsin(nπx/L)

Fermi energy: the energy of the topmost filled levels in the ground state(at 0 K)

Fermi-Dirac distribution

Give the probability that an orbital at energy ξ will be occupied in an ideal gas in thermal equilibrium.

f(ξ)=1/[e(ξ-μ)/kT+1], ξ : energy level, μ: chemical potential

at 0 K, μ(0)=ξF, (i)ξ>μ, f(ξ)=0, (ii)ξ<μ, f(ξ)=1

在任何溫度下,分布情況如何? 據有Fermi energy的電子易被激發

Cₑₗ=U∕∂T|ᵥ, U=ξf(ξ)D(ξ)dξ

Free electron gas in 3-D

(-²/2m)²ψ= (-²/2m)∙(²∕∂x²+²∕∂y²+²∕∂z²)ψ=

ψ=Asin(nπx/L)sin(nyπy/L)sin(nzπz/L)

(-²/2m)²ψ= ²ψ+(2mE/²)ψ=0 let k²= 2mE/², E=²k²/2m=P²/2m

²ψ+k²ψ=0 , ψ=Aexp(-jkr)

Heat capacity of metal

Total internal energy of free electron gas: U=∫₀ξf(ξ)D(ξ)dξ

Cₑₗ=U∕∂T|ᵥ=∫₀ξ(f(ξ)/T)D(ξ)dξ,

total N=∫₀f(ξ)D(ξ)dξ=const. ∫₀(f(ξ)/T)D(ξ)dξ=0, 乘上ξF

ξF∫₀(f(ξ)/T)D(ξ)dξ=0 Cₑₗ=∫₀(ξ-ξF)(f(ξ)/T)D(ξ)dξ

at low temperature, f(ξ)=const. f(ξ)/T=0

在靠近ξF 處之電子才有貢獻,使f(ξ)/T0,因此我們可以只算ξF 附近的D(ξF)的能階數

μ=μ(T) μ ξF

Cₑₗ=(ξ-ξF)(f(ξ)/T)D(ξF)dξ=D(ξF)∫₀[(ξ-ξF)²/kT²][e(ξ-μ)/kT/(e(ξ-μ)/kT+1)²]dξ

let x=(ξ-ξF)/kT, Cₑₗ=D(ξF)k²T-ξf/kT [x²ex/(ex+1)²]dx=D(ξF)k²T-∞[x²ex/(ex+1)²]dx

i.e. [x/(eax+1)]dx=π²/12a² → [x/(eax+1)]dx∕∂a=∂(π²/12a²)/∂a

→ ∫₀[x²ex/(ex+1)²]dx=π²/6 (if a=1)

Density of state: D(ξ)=3N(ξ)/2ξ D(ξF)=3N(ξ)/2ξF

Total number of orbitals, N=2[4πk³/3]/(2π/L)³=Vk³/3π² kF=(3π²N/V)1/3 and ξF= ²kF²/2m N=(V/3π²)( 2mξ/²)3/2 D(ξ)= dN(ξ)/dξ=(V/2π²)( 2mξ/²)3/2ξ1/2

or 取對數再微分 lnN=3lnξ/2+cost. dN/N=3dξ/2ξ dN/dξ=3N/2ξ=D(ξ)

Cₑₗ=D(ξF)k²T-∞ [x²ex/(ex+1)²]dx=[3N(ξ)k²T/2ξF]∙(π²/3)=π²Nk²T/2ξF

Fermi temperature: TF=ξF/kᴃ → Cₑₗ=(π²Nkᴃ/2)∙(kᴃ/ξF)T=(π²Nkᴃ/2)∙(T/TF)

定性分析

N=(V/3π²)( 2mE/²)3/2, N=N(ξF)-N(ξF-kT)=(V/3π²)( 2mξ/²)3/2[1-(1-kT/ξF)3/2]=(V/3π²)( 2mξ/²)3/2∙(3kT/2ξF)=3NT/2TF

U=NkT =3NkT²/2TF Cₑₗ=U∕∂T|ᵥ=3Nkᴃ(T/TF) T

金屬的比熱(at low temperature): C=Cₚₕₒₙₒₙ+Cₑₗ=AT³+rT C/T=AT²+r

for conductor, T<TF, TD

Electrical conductivity σ=1/ρ, 電子運動的平均結果

The electrical resistivity is caused by,

  1. The collisions of electrons with phonons

  2. The collisions of electrons with lattice imperfections, impurity atoms,

經過l(mean free path)能夠通過某一截面的粒子數:

N=Ne-x/l= Ne-vt/vτ=Ne-t/τ

Number of electrons without suffering collisions during the time interval Δt

Ne-t/τ=N₀(1-t/τ)

Number of electrons with collisions during the time interval Δt: N-N= N₀(t/τ)

P(t): the average momentum of an electron, P(t)ΔtP(t+Δt)

P (t+Δt)=1/N₀{[N₀(1-t/τ)(P(t)+FΔt)]+[N₀(t/τ)FΔt]}=(1-t/τ)(P(t)+FΔt)]+(t/τ)FΔt

i.e. F(t)=const., P(t)=e-t/τP(0)+Fτ(1-e-t/τ)

the displacement of the Fermi sphere in the steady state(t>>) is given by:

P=Fτ=(-eE)τ, dP/dt=P/τ+F

課本(C. Kittel): dP/dt=F=-eE, P =-τeEdt P(τ)-P(0)=k(τ)-k(0)=-eEτ

mv=-eEτ, v=-eEτ/m

J=I/A=N(-e)vA/A=-Nev=-Ne(-eEτ/m)=(Ne²τ/m)E=σE Ohm’s law

I=dq/dt=nvtA/t= nvA, σ=Ne²τ/m, ρ=m/Ne²τ

J= σE Jdl=σEdl Idl/A=σV Il/A=σV l/σA=V/I=R, R=l/σA=ρl/A

Thermal conductivity of metal k=Cvl/3, k=kₚₕₒₙₒₙ+kₑₗ

kₑₗ=(π²Nk²T/2ξF)∙vFl/3=(π²Nk²τ/3m)T i.e. l=vFτ, ξF=mvF²/2

at room temperature: lph-phlph-el , kₑₗ/kₚₕₒₙₒₙ=10 ⸪ kₑₗ值很大, metal導熱快

k=kel+kph

  1. T>>(T>TD)

     

    kel

    kph

    C

    T

    const

    v

    const

    const

    l

    1/T

    1/T

 

k=kel+kph 1/T

  1. T<< , T成正比

     

    kel

    kph

    C

    T

    T³

    v

    const

    const

    l

    const

    const

Wiedermann-Franz law

Ratio of thermal to electrical conductivity

kₑₗ/σ=[(π²Nk²τ/3m)T ]/(Ne²τ/m)=π²k²T/3e²

Lorentz number defined as, L=π²k²T/3e²

at low temperature, L decrease because thermalelectrical

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

註記: □= Planck constant

 

 

全站分類:知識學習 隨堂筆記
自訂分類:材料科學
上一則: 提煉冶金介紹
下一則: 能帶理論
迴響(2) :
2樓. 宋坤祐
2023/02/03 21:51

1樓. 宋坤祐
2022/12/07 15:40

比熱的計算(推導)

發表迴響

會員登入