Chap. 7 Energy Gap
Two different standing waves, k=±π/a
ψ(+)=2cos(πx/a), ψ(-)=2isin(πx/a) in 1-D
Charge probability density, ρ(+)=|ψ(+)|² cos²(πx/a) at x=0, a, 2a, 3a…能量最低
ρ(-)=|ψ(-)|² sin²(πx/a) at x= a/2, 3a/2, 5a/2…能量較高

Normalized standing wave:
∫|ψ(+)|²dx=1 → A²∫₀acos²(πx/a)dx=1 → A²a/π∫₀πcos²ydy=1 → A²a/π(y/2+sin2y/4)|₀π=1
→ A²a/2=1, A=(2/a)1/2 ⸫ ψ(+)=(2/a)1/2cos(πx/a)
同理, ψ(-)=(2/a)1/2sin(πx/a)
potential energy, U(x)=U₀cos(2πx/a) → U(+)=∫ψ*(+)Uψ(+)dx, U(-)=∫ψ*(-)Uψ(-)dx
Eg=U(-) - U(+)=U₀
Bloch theorem
Hψₙ=Eψₙ, (ℏ²k²/2m+U)ψₙ=Eψₙ
⸪晶格為週期性排列→ ψₙ亦為週期性函數
the solution of Schrödinger equation for a periodic potential,
ψk(r)=eik∙r∙uk(r) where uk(r)=uk(r+T) T: translation vector
→ ψk(r)=ψk(r+T) 表示相位相同即起始條件一樣
Free electron model: ψk(r)=eik∙r, 平面波,自由電子沒有位能存在
Nearly free electron model: ψk(r)=eik∙r∙uk(r) Bloch function(描述理想晶體時)
Kronig-Penny model(1-D)

(-ℏ²/2m)d²ψ∕dx²+Uψ=Eψ, H=(-ℏ²/2m)d²/dx²+U
in the region 0<x<a, U=0
d²ψ∕dx²+2mEψ/ℏ²=0, K²= 2mE/ℏ²
ψ₁(x)=AeiKx+Be-iKx
in the region a<x<a+b, U=U0
d²ψ∕dx²-2m(U0-E)ψ/ℏ²=0, let Q²= 2m(U0-E)/ℏ²
ψ₂(x)=CeQx+De-Qx
Boundary conditions: ψ₁(a)=ψ₂(a) and dψ₁/dx|x=a=dψ₂/dx|x=a when x=a
→ AeiKa+Be-iKa=CeQa+De-Qa, iKAeiKa-iKBe-iKa =QCeQa-QDe-Qa 解C, D
C=e-Qa/2Q[Q(AeiKa+Be-iKa)+(iKAeiKa-iKBe-iKa )], D=eQa/2Q[Q(AeiKa+Be-iKa)-(iKAeiKa-iKBe-iKa )]
⸫ ψ₁(x)=AeiKx+Be-iKx,
ψ₂(x)=eQ(x-a)/2Q[Q(AeiKa+Be-iKa)+(iKAeiKa-iKBe-iKa )]+e-Q(x-a)/2Q[Q(AeiKa+Be-iKa)-(iKAeiKa-iKBe-iKa )]代入 bloch function
ψ(x+a+b)=u(x+a+b)eik(x+a+b)=u(x)eikxeik(a+b)=ψ(x)eik(a+b), 令x=0
ψ₂(a+b)=ψ₁(0)eik(a+b), and dψ₂(a+b)/dx=[dψ₁(0)/dx]eik(a+b) 將ψ₁, ψ₂代入解A, B

得 [(Q²-K²)/2QK](sinhQb)sinKa+(coshQb)cosKa=cosk(a+b)…(a),
Q²= 2m(U0-E)/ℏ², K²= 2mE/ℏ², k=2π/λ
in the limiting case: b→0, U0→ and define P=Q²ba/2 a finite quantity.
sinhQb=(eQb-e-Qb)/2≈1/2[(1+Qb+Q²b²/2+...)-(1-Qb+Q²b²/2-...)]=Qb,
coshQb=(eQb+e-Qb)/2≈1
(a)簡化為(Q/2K)QbsinKa+cosKa=coska ⸫ (P/Ka)sinKa+cosKa=coska

-
P0 coska=1 at the X points, ka=nπ, n=1, 2, 3,… k=nπ/a時發生不連續


ka=π, k=π/a → E=ℏ²k²/2m=ℏ²|π/a|²/2m=Eπ₁ , ℏ²|(π+∆)/a|²/2m=Eπ₂
Wave equation of electron in a periodic potential for a general crystal potential
U(r)=U(r+T) 3-D vs. U(x)=U(x+na) 1-D
U(x) can be expanded as a Fourier series in the reciprocal lattice.
U(x)=∑GUGeiGx=∑G>0UG(eiGx+e-iGx)=2∑G>0UGcosGx代入Schrodinger equation
[P²/2m+U(x)]ψ(x)=Eψ(x), P=-ih(d/dx) → [(-ℏ²/2m)d²/dx²+U]ψ(x)=Eψ(x)…(b)
解ψ(x)=∑kC(k)eikx, k=2nπ/L and U(x)=∑GUGeiGx代入(b)
[(-ℏ²/2m)d²∑kC(k)eikx/dx²+∑GUGeiGx∑kC(k)eikx=E∑kC(k)eikx
→ (ℏ²k²/2m)∑kC(k)eikx+∑GUGeiGx∑kC(k)eikx=E∑kC(k)eikx
→ (ℏ²k²/2m)∑kC(k)eikx+∑G∑kUGC(k)ei(G+k)x=E∑kC(k)eikx
上式等號左邊第二項∑G∑kUGC(k)ei(G+k)x, 將k 換成 k+G
→ ∑G∑kUGC(k)ei(G+k)x=∑G∑kUGC(k-G)eikx=∑G∑kUGC(k-G)eikx
By equating the coefficient of eikx on both sides.
∑k[(ℏ²k²/2m)C(k)+∑GUGC(k-G)]eikx=∑kEC(k)eikx→ (ℏ²k²/2m)C(k)+∑GUGC(k-G)=EC(k)
⸫ (λₖ-E)C(k)+∑GUGC(k-G)=0…central equation, λₖ= ℏ²k²/2m
*只要C(k)存在,必有一C(k-G)存在
→ ψ(x)=∑GC(k-G)ei(k-G)x=∑GC(k-G)e-iGxeikx= uk(x)eikx, ∑GC(k-G)e-iGx=uk(x)
if uk(x+T)=uk(x)滿足bloch equation的要求
uk(x+T)=∑GC(k-G)e-iG(x+T)=∑GC(k-G)e-iGx∙e-iGT, G=2mπ/a, T=na ⸫GT=2mnπ
U(x)=∑GUGeiGx, G=2nπ/a
另類導出Kronig-Penney model solution:
U(x)=∑GU(G)eiGx=A∙a∙∑ₛδ(x-sa)
i.e. delta function ∫₀ₐδ(x-sa)dx=1 → ∫₀ₐδ(x-a)f(x)dx=f(a)
U(G)=1/a∫₀ₐdxU(x)e-iGx=1/a∫₀ₐdxA∙a∙∑ₛδ(x-sa)e-iGx=A∑ₛ∫₀ₐ δ(x-sa)e-iGxdx=A∑ₛe-iGsa=A∑ₛe-i2πns
G=±2πn/a reciprocal vector, 某一個UG對應一個s值, ⸫UG= A 代入central eq.
→ (λk -E)C(k)+∑ₙ AC(k-2πn/a)=0 define: f(k)=∑ₙ C(k-2πn/a), and f(k)=f(k-2πn/a)
→ C(k)=-Af(k)/(λk -E)=-[(2mA/ℏ²)f(k)]/[k²-(2mE/ℏ²)] 代入 λk = ℏ²k²/2m
上式用k-2πn/a代換k
C(k-2πn/a)=-[(2mA/ℏ²)f(k-2πn/a)]/[(k-2πn/a)²-(2mE/ℏ²)]=-[(2mA/ℏ²)f(k)]/[(k-2πn/a)²-(2mE/ℏ²)]
→ ∑ₙC(k-2πn/a)=-(2mA/ℏ²)f(k)∑ₙ1/[(k-2πn/a)²-(2mE/ℏ²)]
→ - ℏ²/2mA=∑ₙ[(k-2πn/a)²-(2mE/ℏ²)]⁻¹ i.e. α²=2mE/ℏ²
→ - ℏ²/2mA=∑ₙ[(k-2πn/a)²-α²]⁻¹=∑ₙ[(k-2πn/a-α)(k-2πn/a+α)]⁻¹=∑ₙ(1/2α)[(k-2πn/a-α)⁻¹-(k-2πn/a +α)⁻¹]=∑ₙ(1/2α)[a/(ka-2πn-αa)-a/(ka-2πn+αa)]
→ - ℏ²/2mA=(a/4α)∑ₙ[1/(ka/2-αa/2-πn)-1/(ka/2+αa/2-πn)] i.e. cotx=∑ₙ1/(nπ±x)
∑ₙ[1/(ka/2-αa/2-πn)-1/(ka/2+αa/2-πn)]=cot(ka/2-αa/2)-cot(ka/2+αa/2)
=cos(ka/2-αa/2)/sin(ka/2-αa/2)-cos(ka/2+αa/2)/sin(ka/2+αa/2)
=2cos(αa/2)sin(αa/2)/[sin²(ka/2)cos²(αa/2)-cos²(ka/2)sin²(αa/2)]
=

→ - ℏ²/2mA=(a/4α)[2sinαa/(cosαa -coska)]=(a/2α)[sinαa/(cosαa -coska)]
→ - ℏ²α/maA=sinαa/(cosαa -coska)
→ coska=cosαa+(maA/ℏ²α)sinαa=cosαa+(P/αa)sinαa
→ coska=cosαa+(P/αa)sinαa P=ma²A/ℏ²
Ex: U(x)=U2π/aei2πx/a+U-2π/ae-i2πx/a=2U₀cos(2πx/a)=2Ucos(gx), U2π/a=U-2π/a=Ug=U-g=U₀
(λₖ-E)C(k)+∑GUGC(k-G)=0 → (λₖ-E)C(k)+UgC(k-g)+U-gC(k+g)=0
Approximation solution near a zone edge
-
At the zone edge
(λₖ-E)C(k)+∑GUGC(k-G)=0, k=g/2=π/a and λk =ℏ²k²/2m
ψ(x)=∑GC(k-G)ei(k-G)x≈C(k)eikx+C(k-g)ei(k-g)x=C(g/2)eigx/2+C(-g/2)e-igx/2
U(x)=∑GU(G)eiGx=U2π/aei2πx/a+U-2π/ae-i2πx/a=2U₀cos(2πx/a), when G=2π/a
as k=g/2, ⸪UG1/G² →取C(k-g) and C(k+g)二項近似, 其餘忽略
→ (λₖ-E)C(k)+UgC(k-g)+U-gC(k+g)=0 → (λg/2 -E)C(g/2)+UgC(k-g)+U-gC(k+g)=0
→ (λg/2 -E)C(g/2)+UgC(-g/2)+U-gC(3g/2)=0 → (λg/2 -E)C(g/2)+UgC(-g/2)=0...(1)
as k=-g/2
→ (λₖ-E)C(k)+UgC(k-g)+U-gC(k+g)=0 → (λ-g/2 -E)C(-g/2)+UgC(-3g/2)+U-gC(g/2)=0
→ (λ-g/2 -E)C(-g/2)+U-gC(g/2)=0
for non-trivial solution of C(k) →
=0→ E²-(λg/2+λ-g/2)E+λg/2λ-g/2-UgU-g=0
⸪ λk =ℏ²k²/2m → λg/2= ℏ²(g/2)²/2m= ℏ²(-g/2)²/2m=λ-g/2 and Ug=U-g=U₀
⸫ (λg/2-E)²-Ug²=0 → E=λg/2±Ug=ℏ²(g/2)²/2m±Ug, for E(+)= λg/2+Ug=ℏ²(g/2)²/2m+Ug
代入(1)式, [λg/2 -E(+)]C(g/2)+UgC(-g/2)=0 → C(g/2)/C(-g/2)=-Ug/[λg/2 -E(+)]=+1
ψ(x)= C(g/2)eigx/2+C(-g/2)e-igx/2=C(g/2)(eigx/2+e-igx/2)=2C(g/2)cos(gx/2)=2C(g/2)cos(πx/a)
x=0, a, 2a,…|ψₖ₍₊₎|² |cos(πx/a)|² 電子在晶格點上的機率最大,總能量也較低
for E(-)= λg/2-Ug=ℏ²(g/2)²/2m-Ug → [λg/2 -E(-)]C(g/2)+UgC(-g/2)=0 → C(g/2)/C(-g/2)=-Ug/[λg/2 -E(-)]=-1
ψ(x)= C(g/2)eigx/2+C(-g/2)e-igx/2=C(g/2)(eigx/2-e-igx/2)=2C(g/2)sin(gx/2)=2C(g/2)sin(πx/a)
x=a/2, 3a/2,…|ψₖ₍₋₎|² = |2C(g/2)sin(πx/a)|²
-
If the wavevector k is very near the zone edge(k→g/2, but k≠g/2)
取前二項近似, C(k) and C(k-g)
ψ(x)=∑GC(k-G)ei(k-G)x≈C(k)eikx+C(k-g)ei(k-g)x代入bloch equation
(λₖ-E)C(k)+∑GUGC(k-G)=0 → (λₖ-E)C(k)+UgC(k-g)+U-gC(k+g)=0 and (λₖ₋g-E)C(k-g)+UgC(k-2g)+U-gC(k)=0 →取前二項近似, C(k) and C(k-g)
→ (λₖ-E)C(k)+UgC(k-g)=0...(3), (λₖ₋g-E)C(k-g)+U-gC(k)=0...(4)
for non-trivial solution of C(k) →
=0
→ E²-(λk+λk-g)E+λkλk-g-Ug²=0(⸪Ug=U-g=U₀), E=½{(λk+λk-g)±[(λk+λk-g)²-4(λkλk-g-Ug²)]1/2}
→ E=½{(λk+λk-g)±[(λk-λk-g)²+4Ug²)]1/2}, ⸪ λk=ℏ²k²/2m, λk-g=ℏ²(k-g)²/2m, λ=ℏ²(g/2)²/2m
and let K=k-g/2 可以將解整理成EK=(ℏ²/2m)(g²/4+K²)±Ug[1+4(λ/Ug²)(ℏ²K²/2m)]1/2 i.e. λk+λk-g=2λ+ ℏ²K²/2m, λk-λk-g= ℏ²2Kg/2m
when k→g/2=π/a, 4(λ/Ug²)(ℏ²K²/2m)=(ℏ²Kg/2mUg)²<<1 span="">
⸫ EK(±)≈(ℏ²/2m)(g²/4+K²)±Ug[1+½∙4(λ/Ug²)(ℏ²K²/2m)]=(λ±Ug)+(ℏ²K²/2m)(1±2λ/Ug)

-
-
upper band, Ug<0, font="" face="Times New Roman, serif">EK(-)=(λ-Ug)+(ℏ²K²/2m)(1-2λ/Ug)
-
lower band ⸫ EK(+)=(λ+Ug)+(ℏ²K²/2m)(1+2λ/Ug)
-
numbers of states in a band:
consider a linear crystal constructed of N primitive cells of lattice constant a
根據週期性條件U(sa)=U(sa+L), k=0, ±2π/L, ±4π/L,...Nπ/L, L=Na
[π/a-(-π/a)]/(2π/L)=Na/a=N, 在第一不連續中有N個states, 考慮spin每個state有兩個不同的spin(down and up), there are 2N independent states in each energy band→2N electrons
-
for alkali metals which have one valence electron per primitive cell. N cells → N valence electrons → the energy band is half-filled → metal
-
for Alkali earth metal: each primitive cell have two valence electrons → N cells → 2N valence electrons → band is filled up → insulators.
If the bonds are partly overlapped → semiconductors
For diamond, silicon and Ge: each primitive cell has 2 atoms, each atom has 4 valence electrons. N cells have 8N valence electrons
可填滿4個band,且無overlap現象, energy gap~kT→semiconductor
Appendix:
E=½{(λk+λk-g)±[(λk-λk-g)²+4Ug²)]1/2}
→ EK=(ℏ²/2m)(g²/4+K²)±Ug[1+4(λ/Ug²)(ℏ²K²/2m)]1/2,
⸪ λk=ℏ²k²/2m, λk-g=ℏ²(k-g)²/2m, λ=ℏ²(g/2)²/2m and let K=k-g/2

-
Quantum mechanics of electrons in crystal lattices R. De L. Kronig and William George Penney published: Proc. Roy. Soc. 03 Feb. 1931 vol. 130 Issue 814
Kronig-Penney model: electron in a periodic field of a crystal
I: d²ψ/dx²+(2mE/ℏ²)ψ(x)=0 α²=2mE/ℏ²
II: d²ψ/dx²+(2m/ℏ²)(E-V₀)ψ(x)=0 γ²=(2m/ℏ²)(V₀-E)
Bloch wave: ψ(x)=u(x)eikx u(x): periodic function, different for various directions in crystal.
代入I, II方程式
d²ψ/dx²= d²(u(x)eikx)/dx²=d/dx[(du/dx)eikx+iku(x)eikx]
=(d²u/dx²)eikx+ik(du/dx)eikx+ik[(du/dx)eikx+iku(x)eikx ]=[(d²u/dx²)+2ik(du/dx)-k²u(x)]eikx
⸫ I (d²u/dx²)+2ik(du/dx)-k²u(x)+α²u(x)=0 → D²u+2ikDu+(α²—k²)u=0 → D=-ik±iα
u(x)=(Aeiαx+Be⁻iαx)e⁻ikx
II (d²u/dx²)+2ik(du/dx)-k²u(x)-γ²u(x)=0 → D=-ik±γ
u(x)=(Ceγx+De⁻γx)e⁻ikx
Schrödinger eq. -ℏ²/2m(d²ψ/dx²)+U(x)ψ(x)=Eψ(x)
potential in periodic crystal U(x+a)=U(x) a: lattice constant
expanding wave function and potential function by Fourier series
ψ(x)=∑ₖC(k)eikx, U(x)=∑GU(G)eiGx
where G =2πn/a is the reciprocal lattice vector and
U(G)=UG =1/a∫₀ₐdxU(x)e-iGx (7.69)
Because U(x) is real, it is easy to show that UG* = U-G.
UG* =[1/a∫₀ₐdxU(x)e-iGx]*=1/a∫₀ₐdxU(x)eiGx= 1/a∫₀ₐdxU(x)e-i(-G)x= U-G (7.70)
We can use these plan waves as our basis, and therefore we can write any wavefunction in the following form
ψ(x)=∑ₖC(k)eikx (7.71), C(k)=1/a∫₀ₐdxψ(x)e-ikx (7.72)
Consider a system with size L and periodic boundary conditions, ψ(x + L) = ψ(x). With such a boundary condition, we know that the wavevector for plan waves can only take discrete values
k =2πn/L (7.73) with n = … - 3, -2, -1, 0, 1, 2, 3…
代入Schrödinger eq.
-ℏ²/2m(d²∑ₖC(k)eikx/dx²)+∑G U(G)eiGx ∑ₖC(k)eikx=E∑ₖC(k)eikx
→ -ℏ²/2m∙(ik)²∑ₖC(k)eikx+∑G U(G)eiGx ∑ₖC(k)eikx-E∑C(k)eikx=0
→ (ℏ²k²/2m-E)∑ₖC(k)eikx+∑ₖ∑G U(G) C(k)ei(k+G)x=0
The second term on the l.h.s. has two sums ∑ₖ∑G . Define k = G + k and change the sum over k into the sum of k . As a result, this term becomes
∑ₖ∑G U(G) C(k)ei(k+G)x= ∑ₖ∑G U(G) C(k-G)eikx =∑ₖ∑G U(G) C(k-G)eikx (7.77)
So
∑ₖ[(ℏ²k²/2m-E)C(k)+∑G U(G) C(k-G)]eikx=0 (7.78)
For plane waves, if I have a equation
∑ₖa(k)eikx=0 (7.80)
the only solution to this equation is a(k)=0 for every k. This is because plane waves with different wave-vectors are linear independent <k|k >=0 .Therefore, if the sum over planes with different k is zero, every term in the sum must be zero. For the Schrodinger equation we
considered above, this means that
(ℏ²k²/2m-E)C(k)+∑G U(G) C(k-G)=0 (7.81)
In our text book, it is defined λk = ℏ²k²/2m, so we get
(λk -E)C(k)+∑G U(G) C(k-G)=0 (7.82)
This equation is known as the central equation. It is just the Schrodinger equation rewritten in the plane wave basis.
The central equation implies that C(k) is coupled with C(k+G), which includes C(k±π/a), C(k ±2 π/a), C(k ±3π/a), …
In the same time, it is easy to notice that if k - k ≠G, C(k) and C(k ) decouple from each other. C(k ) never appears in any equation of C(k) and vice versa. In other words, the value of C(k) doesn’t care about the value of C(k ).
U(x)=∑GU(G)eiGx=A∙a∙∑ₛδ(x-sa) i.e. delta function ∫₀ₐδ(x-sa)dx=1 → ∫₀ₐδ(x-a)f(x)dx=f(a)
U(G)==1/a∫₀ₐdxU(x)e-iGx=1/a∫₀ₐdxA∙a∙∑ₛδ(x-sa)e-iGx=A∑ₛ∫₀ₐ δ(x-sa)e-iGx dx=A∑ₛ e-iGsa=A∑ₛ e-i2πns
G=±2πn/a reciprocal vector, 某一個UG對應一個s值, UG= A 代入central eq.
→ (λk -E)C(k)+∑ₙ AC(k-2πn/a)=0 define: f(k)=∑ₙ C(k-2πn/a), and f(k)=f(k-2πn/a)
→ C(k)=-Af(k)/(λk -E)=-[(2mA/ℏ²)f(k)]/[k²-(2mE/ℏ²)] 代入 λk = ℏ²k²/2m
上式用k-2πn/a代換k
C(k-2πn/a)=-[(2mA/ℏ²)f(k-2πn/a)]/[(k-2πn/a)²-(2mE/ℏ²)]=-[(2mA/ℏ²)f(k)]/[(k-2πn/a)²-(2mE/ℏ²)]
→ ∑ₙC(k-2πn/a)=-(2mA/ℏ²)f(k)∑ₙ1/[(k-2πn/a)²-(2mE/ℏ²)]
→ - ℏ²/2mA=∑ₙ[(k-2πn/a)²-(2mE/ℏ²)]⁻¹ i.e. α²=2mE/ℏ²
→ - ℏ²/2mA=∑ₙ[(k-2πn/a)²-α²]⁻¹=∑ₙ[(k-2πn/a-α)(k-2πn/a+α)]⁻¹=∑ₙ(1/2α)[(k-2πn/a-α)⁻¹-(k-2πn/a +α)⁻¹]=∑ₙ(1/2α)[a/(ka-2πn-αa)-a/(ka-2πn+αa)]
→ - ℏ²/2mA=(a/4α)∑ₙ[1/(ka/2-αa/2-πn)-1/(ka/2+αa/2-πn)] i.e. cotx=∑ₙ1/(nπ±x)
∑ₙ[1/(ka/2-αa/2-πn)-1/(ka/2+αa/2-πn)]=cot(ka/2-αa/2)-cot(ka/2+αa/2)

→ - ℏ²/2mA=(a/4α)[2sinαa/(cosαa -coska)]=(a/2α)[sinαa/(cosαa -coska)]
→ - ℏ²α/maA=sinαa/(cosαa -coska) → coska=cosαa+(maA/ℏ²α)sinαa=cosαa+(P/αa)sinαa
→ coska=cosαa+(P/αa)sinαa P=ma²A/ℏ²
De Broglie’s postulate:
The motion of a particle is governed by the propagation of its associated pilot waves.
Relationship between them,

pilot wave的特性:
ω=νλ=(E/h)∙(h/P)=E/P在某一瞬間, t=t0 可以偵測pilot wave的波形,有關粒子在空間的運動
pilot wave = a group of waves, and group velocity, g=粒子運動的速度
pilot wave function, ψ(x,t)=sin2π(x/λ-νt)=sin2π(kx-νt), k=1/λ
if ψ=0, 2π(kx-νt)=nπ n=0, 1, 2,… ⸫ xₙ=n/k+νt/k 波速, ω=dxₙ/dt=ν/k=νλ
代表粒子運動是一群pilot wave相加重疊洏成,變成一群pilot waves.
考慮兩個pilot wave相加的情況: ψ(x,t)=ψ₁(x,t)+ψ₂(x,t)
ψ₁(x,t)=sin2π(kx-νt), ψ₂(x,t)=sin2π[(k+dk)x-(ν+dν)t], i.e. sinA+sinB=2cos½(A-B)sin½(A+B)
→ ψ(x,t)=2cos2π(dkx/2-dνt/2)sin2π[(2k+dk)x/2-(2ν+dν)t/2]
≈ 2cos2π(dkx/2-dνt/2)sin2π(kx-νt) if dk<<k, dv<<v
個別pilot wave波速可以第二項求得ω=ν/k=νλ
group wave 的速度, g由第一項求得g=dv/dk=dE/dP
由相對論公式E=mc², P=mv and E²=m²c⁴+P²c²+m₀²c⁴又可證明group wave 的速度等於粒子運動的速度, g=v
g=dv/dk=dE/dP=c²P/E=c²mv/mc²=v (⸪ 2EdE=c²2PdP, dE/dP=c²P/E)
又可知ω>g ⸪ dE/dP=c²P/E → g=c²/ω≤c
Schrödinger Theorem:
總能, Etotal以古典能量為定義: E=P²/2m+V若成立, 粒子速度是否等於波群速度?
ν=E/h=P²/2mh+V/h , k=1/λ=P/h → dv=2PdP/2mh, dk=dP/h ⸫ g=dv/dk=[2PdP/2mh]/(dP/h)=P/m=v
所以Schrödinger theorem:
-
可以滿足h/P=λ, E/h=v and E=P²/2m+V
-
波函數是線性組合的方程式解
-
位能V=V(x,t), 但特殊情況下V=V0=constant, ⸪ F=∂V0∕∂x=0, dP/dt=F=0 ⸫ P=const. → E=P²/2m+V=定值→ λ, v 也都是定值
Def: K=2πk, ω=2πν → P=ℏK, E=ℏω
代入E=P²/2m+V重整可得ℏω=ℏ²K²/2m+V(x,t)
因為微分方程式解為ψ(x,t)須滿足上述條件,我們可以試以ψ(x,t)=sin(Kx-ωt)是否符合ℏω=ℏ²K²/2m+V0的形式
∂ψ∕∂x=Kcos(Kx-ωt), ∂²ψ∕∂x²=-K²sin(Kx-ωt), ∂ψ∕∂t=-ωcos(Kx-ωt)
套入微分方程式α(∂²ψ∕∂x²)+V0ψ=β(∂ψ∕∂t)看是否符合ℏω=ℏ²K²/2m+V0的形式
→ -αK²sin(Kx-ωt)+V0sin(Kx-ωt)=-β ωcos(Kx-ωt)可知ψ(x,t)=sin(Kx-ωt)不合
ψ(x,t)=cos(Kx-ωt)也不合, 因此試以ψ(x,t)=cos(Kx-ωt)+γsin(Kx-ωt)
∂²ψ∕∂x²=-K²cos(Kx-ωt)-γK²sin(Kx-ωt), ∂ψ∕∂t=ωsin(Kx-ωt)-ωγcos(Kx-ωt)
代入微分方程式α(∂²ψ∕∂x²)+V0ψ=β(∂ψ∕∂t)
→ α[-K²cos(Kx-ωt)-γK²sin(Kx-ωt)]+V0[cos(Kx-ωt)+γsin(Kx-ωt)]=β[ωsin(Kx-ωt)-ωγcos(Kx-ωt)]
→ (-αK²+V0+βωγ)cos(Kx-ωt)+(-αγK²+γV0-βω)sin(Kx-ωt)=0
⸫ -αK²+V0+βωγ=0...(a), -αγK²+γV0-βω=0 → -αK²+V0-βω/γ=0...(b)
(a)-(b) → βωγ+βω/γ=0, γ²+1=0 γ=±i 代入(a) -αK²+V0=-+iβω
與ℏω=ℏ²K²/2m+V0比較α=- ℏ²/2m, -+iβ=ℏ
因此微分方程式呈現
(-ℏ²/2m)∂²ψ∕∂x²+V0ψ=iℏ(∂ψ∕∂t), 其解為ψ(x,t)=cos(Kx-ωt)+isin(Kx-ωt)
波動函數只有在Schrödinger theorem才存在,因其複數的特徵無法在物理世界去測量
但波動函數和粒子存在的關連,是以波的振幅強度來描述粒子存在的機率密度
born假設 at t=t0
P(x,t)dx=ψψ*dx , ψ=R+iI and ψ*=R-iI ⸫ ψψ*= R²+I²
If ψ為(-ℏ²/2m)∂²ψ∕∂x²+V0ψ=iℏ(∂ψ∕∂t)之解
→ ψ*就可以成為(-ℏ²/2m)∂²ψ∕∂x²+V0ψ=iℏ(∂ψ∕∂t)…(a)的共軛方程式解
[(-ℏ²/2m)∂²ψ∕∂x²+V0ψ=iℏ(∂ψ∕∂t)]* → [(-ℏ²/2m)∂²ψ∕∂x²]*+(V0ψ)*=[iℏ(∂ψ∕∂t)]*
→ (-ℏ²/2m)∂²ψ*∕∂x²+V0ψ*=iℏ(∂ψ*∕∂t)…(b)
(a)xψ*-(b)xψ → (-ℏ²/2m)[ψ*∂²ψ∕∂x²-ψ∂²ψ*∕∂x²]=iℏ[ψ*∂ψ∕∂t-ψ∂ψ*∕∂t]
化簡(-ℏ²/2m)[ψ*∂²ψ∕∂x²-ψ∂²ψ*∕∂x²]=iℏ[∂ψψ*∕∂t]兩邊積分
→ ∫(-ℏ²/2m)∂∕∂x(ψ*∂ψ∕∂x-ψ∂ψ*∕∂x)dx=∫[iℏ(∂ψψ*∕∂t)]dx
→ (iℏ/2m)(ψ*∂ψ∕∂x-ψ∂ψ*∕∂x)|x₁x₂=∂∕∂t∫x₁x₂ ψψ* dx
ex.以ψ(x,t)=exp[i(Kx-ωt)]為例
ψ*(x,t)=e-i(Kx-ωt) → ∂ψ∕∂x=iKψ, ∂ψ*∕∂x=-iKψ*
⸫(iℏ/2m)(ψ*∂ψ∕∂x-ψ∂ψ*∕∂x)|x₁x₂=∂∕∂t∫x₁x₂ ψψ*dx → (iℏ/2m)(2iKψ*ψ)|x₁x₂=∂∕∂t∫x₁x₂ ψ*ψdx → ℏK/m(ψ*ψ)=∂∕∂t∫x₁x₂ ψ*ψdx=v₁-v₂ ⸪ ψ*ψ=1, ℏK/m=P/m=v
對V=V0的例子來說, v也為常數, and ψ*ψ=1對t微分,兩邊0=0
因為∫-∞∞ ψ*ψd=1,對任何t都成立,所以(iℏ/2m)(ψ*∂ψ∕∂x-ψ∂ψ*∕∂x)|x₁x₂永遠為實數的機率通量
不含時Schrödinger equation(偏微分→常微分)
if V=V(x) → ψ(x,t)=φ(x)ϕ(t)代入微分方程式
(-ℏ²/2m)∂²φ(x)ϕ(t)∕∂x²+V0φ(x)ϕ(t)=iℏ[∂φ(x)ϕ(t)∕∂t]
→ (-ℏ²/2m)ϕ(t)∂²φ(x)∕∂x²+V0φ(x)ϕ(t)=iℏ[φ(x)∂ϕ(t)∕∂t]
除以φ(x)ϕ(t)
→ 1/φ(x)[(-ℏ²/2m)∂²φ(x)∕∂x²+V0]=iℏ/φ(x)[∂ϕ(t)∕∂t] 兩邊變數不同需有共同常數解C才成立
iℏ/φ(x)[∂ϕ(t)∕∂t]=C → ∫dϕ(t)∕ϕ(t)=∫(C/iℏ)dt=-iCt/ℏ → lnϕ(t)=-iCt/ℏ, ϕ(t)=e-iCt/ℏ
C/ℏ=ω, C=ℏω=E ⸫ ϕ(t)=e-iEt/ℏ 波函數變成ψ(x,t)=φ(x)exp(-iEt/ℏ)


