Contents ...
udn網路城邦
光子(1)--晶體振盪
2017/12/13 13:37
瀏覽386
迴響0
推薦0
引用0

Chap. 4 Phonon I crystal vibration

只考慮cubic system

vibration of crystal with monatomic basis

聲波:介質粒子的振動 F=ma

F=C(uₛ₊₁-u)-C₋₁(uₛ-uₛ₋₁)=C(uₛ₊₁-u)+C₋₁(uₛ₋₁-u), F=∑ₚC(uₛ₊ₚ-u)=ma

m(d²u/dt²)=∑ₚC(uₛ₊ₚ-u) equation of motion

us=u(t) 猜解去try!!微分二次=本身ex

try the traveling wave function: us= u₀ei(kx-ωt)

x=sa, sZ代入us, us=u₀ei(ksa-ωt)

-mω²us=∑ₚCₚ[u₀ei(ksa-ωt)(eikpa-1)] → -mω²=∑ₚCₚ(eikpa-1) i.e. k=2/ (wavevector)

consider Cn=C-n, p>0

-mω²=∑ₚ>Cₚ(eikpa-1)=∑ₚ>₀[Cₚ(eikpa-1)+Cₚ(e-ikpa-1)]=∑ₚCₚ(2coskpa-2)=-∑ₚ>Cₚ2(1-coskpa) → ω²=∑ₚ>₀2Cₚ/m(1-coskpa)

if only the interactions of the nearest neighboring are taken into account, p=1

ω²=2C₁/m(1-coska)=4C₁/m(sin²ka/2) ⸫ ω=(4C₁/m)1/2|sinka/2|

independent to -π/akπ/a, k=k±2nπ/a

us=u₀ei(ksa-ωt)us(k)=us(k), k=2π/λ, 0kπ/a 2π/λπ/aλ2a

=(k), v=/k group velocity vg=d/dk=vg(k)=a(C₁/m)1/2coska/2, vg(±π/a)=0表示能量沒有傳遞standing wave形式

if k=±π/a, us=u₀ei(ksa-ωt)=u₀ei(sπ-ωt)=u₀(eiπ )se-iωt=u₀(-1)se-iωt 只在原地振動

difference between an elastic continuum and lattice

if a0, ka0cos(kpa)=1-½(kpa)2+…

ω²=(2/m)∑ₚ>Cₚ(1-coskpa)≈(2/m)∑ₚ>₀(Cₚ/2)(kpa)²=(k²a²/m)∑ₚ>Cₚp²=Ak²

ω=Ak vg=A

Lattice with two atoms per primitive cell

Fᴍ₁=M(d²us/dt²)=c(v-us)+c(vₛ₋₁-us)=c(vₛ+vₛ₋₁-2us)...(1)

Fᴍ₂=M(d²vs/dt²)=c(us₊₁-v)+c(us-v)=c(us₊₁+us-2v)...(2)

us=uei(ksa-ωt), vs=vei(ksa-ωt)

(1) -Mω²u=c(vₛ+vₛe-ika-2us) -Mω²u=cv(1+e-ika)-2cu (2c-Mω²)u-c(1+e-ika)vₛ=0

(2) -Mω²v=c(uₛ+uₛeika-2vs) -Mω²v=cu(1+eika)-2cv (2c-Mω²)v-c(1+eika)uₛ=0

for non-trivial solution of u and v

=0 MMω-2c(M₁+M)ω²+2c²(1-coska)=0

ω²=c(M₁+M)/MM₂{1±[1-2MM(1-coska)/(M₁+M₂)²]1/2}

physical range of =? is real

|coska|1, coska=MMω⁴/2c²-(M₁+M)ω²/c+1

 

(a) coska1

MMω⁴/2c²-(M₁+M)ω²/c+11 ω²[ω²-2c(M₁+M)/MM]0

ω[2c(1/M₁+1/M)]1/2 when k=0, ωmax=[2c(1/M₁+1/M)]1/2

 

(b) coska-1

MMω⁴/2c²-(M₁+M)ω²/c+1-1 ω-2c(M₁+M)ω²/MM+4c²/MM₂≥0

(ω²-2c/M₁)(ω²-2c/M₂)≥0

if M1>M2, 2c/M1<2c/M2 2>2c/M2 or 2>2c/M1 (when ka=π, k=π/a)

In the limiting case:

  1. ka<<1

coska1-½k2a2

ω²=c(M₁+M)/MM₂{1±[1-2MM(1-coska)/(M₁+M₂)²]1/2}

c(M₁+M)/MM₂{1±[1-2MMk²a²/(M₁+M₂)²]1/2}

(+) ω²=2c(1/M₁+1/M), (-) ω²=ck²a²/2(M₁+M₂)

  1. k=±π/a

ω²=c(M₁+M)/MM₂{1±[1-2MM(1-coska)/(M₁+M₂)²]1/2}

=c(M₁+M)/MM₂[1±(M₁-M)/(M₁+M)]

ω²=2c/M or ω²=2c/M

us=uei(ksa-ωt), vs=vei(ksa-ωt)

(2c-Mω²)u-c(1+e-ika)vₛ=0, (2c-Mω²)v-c(1+eika)uₛ=0

AmM/AmM=|u/v|=|c(1+e-ika)/(2c-Mω²)|=|(2c-Mω²)/c(1+eika)|

|1+eika|=|1+coska+isinka|=[(1+coska)²+sin²ka]1/2=(2+2coska)1/2

=[4cos²(ka/2)]1/2=2cos(ka/2)

|u/v|=2ccos(ka/2)/(2c-Mω²)=(2c-Mω²)/2ccos(ka/2)

For ka<<1

  1. ω²=2c(1/M₁+1/M)

u/v=2ccos(ka/2)/(2c-Mω²)=2c(1+½(ka/2)²+...)/[2c-2c(1/M₁+1/M)]-M/M振幅反向,

i.e. cos(ka/2)=1+½(ka/2)²+...

  1. ω²=ck²a²/2(M₁+M₂)0, u/v≈1 振幅同向

case 1 consider ionic compound 造成反向

case 2 利用聲波產生”切應變” 造成同向

2 atoms per primitive cell or p atoms per primitive cell, if N cell, each atom has 3 degree of freedomFt=3Pn, each branch has N

 

k=k+G elastic collision, p=k, G :reciprocal vector

if inelastic, 晶體振盪K:phonon k=k+G±K

 

 

 

 

 

 

 

註記: □=

全站分類:知識學習 隨堂筆記
自訂分類:材料科學
上一則: 光子(2)--熱性質
下一則: 晶體鍵結
發表迴響

會員登入