Chap. 4 Phonon I crystal vibration
只考慮cubic system

vibration of crystal with monatomic basis
聲波:介質粒子的振動 F=ma

F₂=C₁(uₛ₊₁-uₛ)-C₋₁(uₛ-uₛ₋₁)=C₁(uₛ₊₁-uₛ)+C₋₁(uₛ₋₁-uₛ), Fₛ=∑ₚCₚ(uₛ₊ₚ-uₛ)=ma
m(d²u/dt²)=∑ₚCₚ(uₛ₊ₚ-uₛ) equation of motion
us=u(t) 猜解去try!!微分二次=本身→ ex
try the traveling wave function: us= u₀ei(kx-ωt)

x=sa, sZ代入us, → us=u₀ei(ksa-ωt)
-mω²us=∑ₚCₚ[u₀ei(ksa-ωt)(eikpa-1)] → -mω²=∑ₚCₚ(eikpa-1) i.e. k=2/ (wavevector)
consider Cn=C-n, p>0
-mω²=∑ₚ>₀Cₚ(eikpa-1)=∑ₚ>₀[Cₚ(eikpa-1)+Cₚ(e-ikpa-1)]=∑ₚCₚ(2coskpa-2)=-∑ₚ>₀Cₚ2(1-coskpa) → ω²=∑ₚ>₀2Cₚ/m(1-coskpa)
if only the interactions of the nearest neighboring are taken into account, p=1
ω²=2C₁/m(1-coska)=4C₁/m(sin²ka/2) ⸫ ω=(4C₁/m)1/2|sinka/2|
independent to -π/a≤k≤ π/a, k=k±2nπ/a
us=u₀ei(ksa-ωt) → us(k)=us(k), k=2π/λ, 0kπ/a 2π/λπ/aλ2a

=(k), v=/k group velocity vg=d/dk=vg(k)=a(C₁/m)1/2coska/2, vg(±π/a)=0表示能量沒有傳遞以standing wave形式

if k=±π/a, us=u₀ei(ksa-ωt)=u₀ei(sπ-ωt)=u₀(eiπ )se-iωt=u₀(-1)se-iωt 只在原地振動
difference between an elastic continuum and lattice
if a→0, ka→0cos(kpa)=1-½(kpa)2+…
ω²=(2/m)∑ₚ>₀Cₚ(1-coskpa)≈(2/m)∑ₚ>₀(Cₚ/2)(kpa)²=(k²a²/m)∑ₚ>₀Cₚp²=Ak²
→ ω=Ak ⸫ vg=A
Lattice with two atoms per primitive cell

Fᴍ₁=M₁(d²us/dt²)=c(vₛ-us)+c(vₛ₋₁-us)=c(vₛ+vₛ₋₁-2us)...(1)
Fᴍ₂=M₂(d²vs/dt²)=c(us₊₁-vₛ)+c(us-vₛ)=c(us₊₁+us-2vₛ)...(2)
us=uei(ksa-ωt), vs=vei(ksa-ωt)
(1) -M₁ω²uₛ=c(vₛ+vₛe-ika-2us) → -M₁ω²uₛ=cvₛ(1+e-ika)-2cuₛ → (2c-M₁ω²)uₛ-c(1+e-ika)vₛ=0
(2) -M₂ω²vₛ=c(uₛ+uₛeika-2vs) → -M₂ω²vₛ=cuₛ(1+eika)-2cvₛ → (2c-M₂ω²)vₛ-c(1+eika)uₛ=0
for non-trivial solution of u and v
=0 → M₁M₂ω⁴-2c(M₁+M₂)ω²+2c²(1-coska)=0
ω²=c(M₁+M₂)/M₁M₂{1±[1-2M₁M₂(1-coska)/(M₁+M₂)²]1/2}
physical range of =? is real
|coska|≤1, coska=M₁M₂ω⁴/2c²-(M₁+M₂)ω²/c+1
(a) coska1
M₁M₂ω⁴/2c²-(M₁+M₂)ω²/c+11 → ω²[ω²-2c(M₁+M₂)/M₁M₂]0
⸫ ω[2c(1/M₁+1/M₂)]1/2 when k=0, ωmax=[2c(1/M₁+1/M₂)]1/2
(b) coska-1
M₁M₂ω⁴/2c²-(M₁+M₂)ω²/c+1≥-1 → ω⁴-2c(M₁+M₂)ω²/M₁M₂+4c²/M₁M₂≥0
→ (ω²-2c/M₁)(ω²-2c/M₂)≥0
if M1>M2, 2c/M1<2c/M2 2>2c/M2 or 2>2c/M1 (when ka=π, k=π/a)

In the limiting case:
-
ka<<1
coska1-½k2a2
ω²=c(M₁+M₂)/M₁M₂{1±[1-2M₁M₂(1-coska)/(M₁+M₂)²]1/2}
≈c(M₁+M₂)/M₁M₂{1±[1-2M₁M₂k²a²/(M₁+M₂)²]1/2}
(取+) ω²=2c(1/M₁+1/M₂), (取-) ω²=ck²a²/2(M₁+M₂)
-
k=±π/a
ω²=c(M₁+M₂)/M₁M₂{1±[1-2M₁M₂(1-coska)/(M₁+M₂)²]1/2}
=c(M₁+M₂)/M₁M₂[1±(M₁-M₂)/(M₁+M₂)]
ω²=2c/M₁ or ω²=2c/M₂
us=uei(ksa-ωt), vs=vei(ksa-ωt)
(2c-M₁ω²)uₛ-c(1+e-ika)vₛ=0, (2c-M₂ω²)vₛ-c(1+eika)uₛ=0
AmM₁/AmM₂=|u/v|=|c(1+e-ika)/(2c-M₁ω²)|=|(2c-M₂ω²)/c(1+eika)|
|1+eika|=|1+coska+isinka|=[(1+coska)²+sin²ka]1/2=(2+2coska)1/2
=[4cos²(ka/2)]1/2=2cos(ka/2)
⸫ |u/v|=2ccos(ka/2)/(2c-M₁ω²)=(2c-M₂ω²)/2ccos(ka/2)
For ka<<1
- ω²=2c(1/M₁+1/M₂)
u/v=2ccos(ka/2)/(2c-M₁ω²)=2c(1+½(ka/2)²+...)/[2c-2c(1/M₁+1/M₂)]≈-M₂/M₁振幅反向,
i.e. cos(ka/2)=1+½(ka/2)²+...
- ω²=ck²a²/2(M₁+M₂)→0, u/v≈1 振幅同向
case 1 consider ionic compound 造成反向
case 2 利用聲波產生”切應變” 造成同向
2 atoms per primitive cell or p atoms per primitive cell, if N cell, each atom has 3 degree of freedom→Ft=3Pn, each branch has N
ℏk=ℏk+ℏG elastic collision, p=ℏk, G :reciprocal vector
if inelastic, 晶體振盪→K:phonon ℏk=ℏk+ℏG±ℏK











註記: □=ℏ


