Contents ...
udn網路城邦
晶體鍵結
2017/12/13 11:43
瀏覽536
迴響0
推薦0
引用0

Chap. 3 Crystal binding

Principle types of crystalline binding

  1. crystal of inert gas(VIII A): van der Wals force; dipole-to-dipole interaction

  2. ionic crystal: NaCl electrostatic force between ions(IA & VIIA)

  3. covalent crystal: C, Si(IVA) quantum effect –spin repulsive or attractive by exchange force.

  4. metallic crystal: Na, K(IA, B) charge attraction between positive and negative charges.

Crystal of inert gas

不考慮thermal vibration if –q分布中心在中心,則場效應=0

He

Ne

Ar

Kr

Xe

hcp

( fcc )

1s²

1s²

2s²

2p

(Ne)

3s²

3p

(Ar)

3d¹⁰

4s²

4p

(Kr)

4d¹⁰

5s²

5p

if thermal vibration at 0K, zero-point energy = ½ℏω=½cu²=½mw²u²

u²1/2平均距離, u:位移, c:彈性係數 k

binding force in the inert gas crystal at instant t :

the interaction energy between two diploes, p, p, separated by R is given by

U(R)=(p₁∙p)/R³-3(p₁∙R)(p₂∙R)/R⁵ → U(R)=(p₁∙p₂)/R³-3(p₁∙p₂)/R³=-2(p₁∙p₂)/R³

V=pR/R³, E=-V=-(pR/R³)=-p∙(R/R³)-(R/R³)p

p=0, 與電荷密度有關∵r距離太遠

i.e.

(R/R³)=[R/R³+R(1/R³]=I/R³+R[-3R⁻⁴(R)]=I/R³+R[-3R⁻⁴(R/R)]

where =(∂∕∂x)i+(∂∕∂y)j+(∂∕∂z)k= (∂∕∂x)e, r=xi+yj+zk=j xj ej ,

r=[ (∂∕∂x)e]∙[∑j xj ej]=[∑j (xj ∕∂x)(eej )]=δj=

=I, i.e. δj=1 if i=j or δj=0 if ij

E=-V=-[I/R³-3R⁻⁴(RR/R)]p=-p/r³+3R(Rp/R)=-p/R³+3R²p/R⁵=2p/R³=|E| R// p

the induced dipole, p: pEp₂=αE, : electronic polarizability電極化率

p₂=α(2p/R³)=2αqr₀/R³ and U(R)=-2(p₁∙p₂)/R³=(-2/R³)rq∙(2αqr₀/R³)

=-4α(rq)²/R⁶=-A/R⁶ → F=-U=-dU/dR  1/R

Quantum derivation of van der Waals force

total energy, H=(p₁²/2mcx₁²)+(p₂²/2mcx₂²)+H, H1: 靜電位能

ex. H原子, E=(n+½)ℏω

H₁=e²/R-e²/(r+x₁)-e²/(R-x)+e²/(R-x₂+x)

x₁, x₂<<R → (1+R/r)⁻¹=1-x/R+(x/R)²-(x/R)³+... Taylor series

H₁=e²/R-e²/R[1-x₁/R+(x₁/R)²-(x₁/R)³+...]-e²/R[1-x₂/R+(x₂/R)²-(x₂/R)³+...]+e²/r[1-(x₂-x₁)/R+(x₂-x₁)²/R²-(x₂-x₁)³/R³+...] → H₁≈-2e²xx₂/R³

H=(p₁²/2mcx₁²)+(p₂²/2mcx₂²)-2e²xx/R³

let x=1/√2(x₂+x), x=1/√2(x₁-x)x₁=1/√2(xₛ+xₐ), x₂=1/√2(xₛ-xₐ)

H=(p₁²/2mcx₁²)+(p₂²/2mcx₂²)-2exx/R³

={[1/√2(p+p)²/2m]+½c[1/√2(xₛ+xₐ)]²}+{[1/√2(p-p)²/2m]+½c[1/√2(xₛ-xₐ)]²}-2e²[1/√2(xₛ+xₐ)][1/√2(xₛ-xₐ)]/R³

=[½(p²+2pp+p²+p²-2pp+p²)]/2m+c/2[½(xₛ²+2xₛxₐ+xₐ²)+½(xₛ²-2xₛxₐ+xₐ²)]-e²(xₛ²-xₐ²)/R³=p²/2m+p²/2mcxₛ²+½cxₐ²-e²(xₛ²-xₐ²)/R³

=[p²/2m+½(c-2e²/R³)xₛ²]+[p²/2m+½(c+2e²/R³)xₐ²]

∵為Simple Harmonic motion E=(n+½)ℏω₀

if H=H0+H1 H=E (H0+H1)=E H0+H1=E

*The zero point energy(n=0) of the system

½ ħ(ωs+ωa)—with dipole-to-dipole interaction, H0+H1(Ep.p.+ E0-0)

½ ħ(ω0+ω0)—without D-D interaction(E0-0)

U=½ ħ(ωs+ωa)-½ ħ(ω0+ω0)

ω0=(c/m)1/2, ωs=[(c-2e²/R³)/m]1/2=(c/m)1/2[1-½(2e²/cR³)-(2e²/cR³)²+...]

ωa=[(c+2e²/R³)/m]1/2=(c/m)1/2[1+½(2e²/cR³)-(2e²/cR³)²+...]

U=½ ħ(ωs+ωa)-½ ħ(ω0+ω0) ½ ħ[ω0+ω0-¼ω0 (2e²/cR³)²]-½ ħ(ω0+ω0)

=-ℏω₀/8(2e²/cR³)²

Repulsive interaction—due to the overlapping of electron orbit[Pauli exclusion principle]

Empirical form B/R¹²

the total potential energy of two inert gas atoms at separation R is

U(R)=B/R¹²-A/R⁶=4ε[(σ/R)¹²-(σ/R)⁶]

Equilibrium lattice constant

Uₜₒₜₐₗ=½ j Uijj (Uij)=(N/2)jUij

now Uij=4ε[(σ/Rij)¹²-(σ/Rij)⁶ ] let Rij=Pij R → Uij=4ε[(1/Pij)¹²(σ/R)¹²-(1/Pij)⁶(σ/R)⁶]

Uₜₒₜₐₗ=½N4ε[∑j(1/Pij)¹²(σ/Rij)¹²-∑j(1/Pij)⁶(σ/Rij)⁶]

For inert gas crystal, in addition to He.

  1. nearest neighbors: 12, Pij=1 and R=a/2

  2. second nearest neighbors: 6, Pij=2 and R’=2R=a

  3. third nearest neighbors: 12, Pij=2 and R”=2R=2a….

j(1/Pij)¹²=121⁻¹²+6∙√2⁻¹²+122⁻¹²+...=12.1388

j(1/Pij)⁶=121⁻⁶+6∙√2⁻⁶+122⁻⁶+...=14.45392

Uₜₒₜₐₗ=2Nε[12.1388(σ/R)¹²-14.45392(σ/R)⁶]

R0=? at equilibrium dU/dR|R=R=0=-2Nε[12.13(12σ¹² /R¹³)-14.45(6σ⁶/R⁷)]

R0/σ=1.09

Cohesive energy游離能

Utotal=-8.60N理論值, at equilibrium and 0 K, 只考慮位能

K.E. into account>i.e. atom are at rest.

Inert gas

Ne

Ar

Kr

Xe

R0/

1.14

1.11

1.10

1.09

ε(erg)1016

50

167

225

320

Cohesive energy(KJ/mole)

-2.589

-8.646

-11.649

-16.567

Experimental cohesive energy

-1.88

-7.74

-11.20

-16.0

Cohesive energy reduced by quantum effect

28%

10%

6%

4%

modification

-1.864

-7.781

-10.950

-15.904

 

e.g. UNe=-(8.606.021023510-16)/(107103)

 

Ionic crystal

Two common crystal structure: 1. NaCl(f.c.c.), 2. CsCl(b.c.c.)

What forces contribute to the crystal binding?

  1. electrostatic force: coulomb’s force, attractive force.

  2. exchange force: repulsive force due to the overlapping of electron orbits.

  3. van der Waal’s force: dipole-to-dipole interaction效果約1%忽略之

Uₜₒₜₐₗ=½ j Uij, energy includes(i)coulomb: ±q²/rij, (ii)exchange: λe-rij/ρ

Uₜₒₜₐₗ=½2NjUij=NjUij=Nj(λe-rij/ρ±q²/rij)

rij=PijR, Uₜₒₜₐₗ=Njλe-rij/ρ-Nj(±1/Pij)(q²/R), ∑j(±1/Pij)=Modelung constant

Uₜₒₜₐₗ=Nzλe-R/ρ-Nj(±1/Pij)(q²/R) , define αj(±1/Pij)=modelung constant

NaCl crystal(f.c.c.): pick Cl- as a reference ion

Nearest ion: 6Na+, R0

2nd nearest ions: 12 Cl-, 2R0

3rd nearest ion: 8 Na+, 3R0

α=[61⁻¹+12∙√2⁻¹²+8∙√3⁻¹+...]=1.747565

CsCl crystal(b.c.c.) : pick Cs+- as a reference ion

Nearest ion: 8Cl-, R0=3a/2

2nd nearest ions: 6Cs+, R=a=2R0/3

3rd nearest ion: … α=1.762675

Uₜₒₜₐₗ=Nzλe-R/ρ-Nα(q²/R)

determination of , : characteristic force range

bulk modulus, B-VdP/dV, definition for a crystal of f.c.c. structure

V=2NR³ dV=6NR²dR B=-2NR³dP/(6NR²dR)=-(R/3)(dP/dR)

dU=TdS-PdV=-PdV=-P6NR²dR at 0 K and R=R0

P=-(1/6NR²)dU/dR, dP/dR=-(1/6NR²)d²U/dR²+(1/3NR³)dU/dR

B=-(R/3)(dP/dR)=-(R/3)[-(1/6NR²)d²U/dR²+(1/3NR³)dU/dR]

=(1/18NR)d²U/dR²+(1/9NR²)dU/dR]

at equilibrium state, R=R0 dU/dR=0, B=(1/18NR)d²U/dR²|R=R

Uₜₒₜₐₗ=Nzλe-R/ρ-Nα(q²/R) → dU/dR=N[-zλe-R/ρ/ρ+αq²/R²]=0, R0²=ραq²/(zλe-R/ρ)

d²U/dR²=N[zλe-R/ρ/ρ²-2αq²/R³]|R=R=N[αq²/ρR²-2αq²/R³]

B=(1/18NR)N[αq²/ρR²-2αq²/R³]=αq²/18R₀⁴(R/ρ-2)

R/ρ=18R₀⁴B/αq²+2, ρ=R(18R₀⁴B/αq²+2)⁻¹

ex. NaCl B=2.401011, R0=2.820Å, =1.747565, q=1.610-19coul=4.810-10 statcoulombs(1coul=3109 statcoulombs)

=0.321Å

 

U(R)=Nzλe-R/ρ-Nα(q²/R)=N[zλe-R/ρ-α(q²/R)]|R=R,

dU/dR=N[-zλe-R/ρ/ρ+αq²/R²]=0, R0²e-R/ρ=ραq²/(zλ) when R=R0

U(R0)=N[αq²ρ/R²-αq²/R]=Nαq²/R₀[ρ/R₀-1]

 

 

 

 

 

 

 

 

發表迴響

會員登入