Contents ...
udn網路城邦
光子(2)--熱性質
2017/12/13 21:02
瀏覽558
迴響0
推薦0
引用0

Chap. 5 Phonon II Thermal properties

Gas Cp, Cv and Cp-Cv=R

 

Solid Cp-Cv=9α2βVT, α:thermal expansion coefficient of linear expansion, β:bulk modulus

能量均分原理: 每一個自由度有相等的能量kT)

Cv=(∂U/T)ᵥ=3Nk (Dulong-Petit’s law), U=3NkT(動能+位能, 6個自由度)

*只在高溫下適用

model experiment比較來證明model

experiment facts about Cv of solids:

  1. in the room temperature range, Cv3NkB=25 J/moleK

  2. at low temperature (<10 k="" span="">

insulator: CvT3 (Debye’s T3 law)

metal: CvT

superconducting: Cve-A/T

magnetic material: CvT3/2

Insulator絕緣體, *觀念: 能量不連續 Einstein’s model

 

Assume that all atoms in a solid oscillators with the same frequency.

U=[jn]ℏω

Debye’s model

  1. the frequency of oscillators in a solid are not the same but some kind of distribution D()

  2. the sound velocity is assumed to be constant, n=Planck distribution 低溫

n=n=0nPₙ, Pₙ=Nₙ/∑sNₛ=e-Eₙ/kT/∑s e-Eₛ/kT n=n=0ne-Eₙ/kT/∑s e-Eₛ/kT

代入n  e-Eₙ/kT E=nℏω 代入n=∑ₛ=0se-sℏω/kT/∑s e-sℏω/kT , x=ℏω/kT

n=∑ₛ=0se-sx/∑s e-sx =-∂[ln∑s e-sx]∕∂x=-∂ln[1/(1-e-x)]∕∂x=∂ln(1-e-x)∕∂x=e-x/(1-e-x)=1/(ex-1) Planck distribution

 

U=nℏωD()d

density of modes in one dimension

standing wave method, D(k)dk, each vibrating mode is a standing wave.

    1. us=Aei(ska-ωt)+Aei(-ska-ωt)∙e=Ae-iωt∙2isinska=A(cosωt-isinωt)∙2isinska

real wave function us(x,t)=2Asinωtsinska, us sinska and us=0=0, us=N=0sinNka=0

Nka=π, 2π , …(N-1)π, Nπ

k=π/Na, 2π/Na, …(N-1)π/Na, π/a

if k=π/a+π/Na,

us(x,t)=2Asinωtsinska=2Asinωtsin[s(π/a+π/Na)a]=2Asinωtsin[sπ+sπ/N]

=2Asinωtsin(sπ/N)(-1)s=2Asinωtsin(sπ/N)

只有N-1atom可動 N-1個自由度, kN個獨立值

if k=π/a, us(x,t)=2Asinωtsinska=2Asinωtsinsπ=0測不到此波

獨立k= π/Na, 2π/Na, …(N-1)π/Na N-1k (N-1 modes)

if Na=Lk=π/L, 2π/L, …(N-1)π/L

D():每單位頻率有多少, D(k)dk=D(k)(dk/d)d=D()d

One mode, π/L D(k)=(π/L)⁻¹=L/π, 0<k<π/a

    1. method of periodic boundary condition

us=u₀ei(kx-ωt)=u₀ei(ska-ωt) , u(sa)=u(sa+L) → eikL=1, kL=±2nπ, k=±2nπ/L

k=0, ±2π/L, ±4π/L,..., ±Nπ/L

L=Na: katom數目的關係

ex. N=8, L=Na, k=0, 2/8a, 4/8a, 6/8a, 8/8a(偶數只取”+”), 10/8a(/a2/8a重複)

k=/a us=u₀ei[s(π/a)a-ωt]=u₀eisπe-iωt=u(-1)se-iωt

k=-/a us=u₀ei[s(-π/a)a-ωt]=u₀e-isπe-iωt=u(-1)se-iωt

k=0 us=ue-iωt

ex. N=9, L=Na, k=0, 2/9a, 4/9a, 6/9a, 8/9a, 10/9a[(10/9a)= (18/9a-8/9a)= 2/a-+8/9a]

, 8/9a相同

there is one mode for every 2π/L, density of mode D(k)= (2π/L)⁻¹=L/2π

    1. density of mode in 3-D traveling wave, us=u₀ei(kr-ωt)

periodic boundary condition: u(r)=u(r+L)=u(r+Lx)x方向上k=?

u(r)=u(r+L)=u(r+Lx)=u₀ei(kr-ωt)=u₀ei(kr-ωt)eikₓ∙Lₓ → eikₓLₓ=1,

kₓLₓ=±2nπ, k=0, 2/Lₓ, 4/Lₓ, 6/Lₓ, …, N/Lₓ| Nmodes in x方向上有N個原子

同理得 eikyLy=eikzLz=1,

ky=0, 2/Ly, 4/Ly, 6/Ly, …, Ny/Ly| Ny modes

 

kz=0, 2/Lz, 4/Lz, 6/Lz, …, Nz/Lz| Nz modes 總共有 NxNyNzmode

 

Ntotal=NxNyNz, k=kx+kyy+kzz

 

考慮成正方形, D()dV每單位體積有幾個mode

 

U=nℏωD()d

(2π/L)³的體積中只有含一個mode; there is one mode for every (2π/L)³ in k-space.

 

Density of state

D(k)=(2π/L)³=L³/8π³=V/8π³

D(k)dk= # of modes with wavevector between k and k+dk

n(k)—represent the total number of modes with wave vector less than k

D(k)dk=n(k+dk)-n(k)

n(k)=[4πk³/3]/(2π/L)³=(V/6π²)k³ k³

D(k)dk=n(k+dk)-n(k)=([n(k+dk)-n(k)]/dk)dk=(dn/dk)dk D(k)=dn/dk

D(k)=dn(k)/dk=Vk²/2π²

變數轉換k→ω, D(k)dk=D(k)(dk/d)d=D()d

Debye model—“sound speed” is assumed to be constant.

相速v=/k, =vk d/dk=v group velocity

D(k)dk=D(k)(dk/dω)dω=(Vk²/2π²)dω/v=Vω²dω/2π²v³

if there are N atoms in a crystal, there should be N phonon modes for each polarization.

U=∫₀ωᴅnℏωD(ω)dω

n(k)=N=n(), [4πk³/3]/(2π/L)³=Vω³/6π²v³=N ω=[6π²v³(N/V)]1/3 v

U=∫₀ωᴅ[1/(eℏω/kT-1)]ℏω(Vω²/2π²v³)dω for each polarization 1/v³+1/v³+ 1/v³

for three polarization  , vtvl

assume that the phonon velocity is independent of polarization,

 , let x=ℏω/kT → dx=(ℏ/kT)dω and x=ℏω/kT=θ/T

U=3V/2π²v³∫₀ωᴅ[ω³/(eℏω/kT-1)]dω=3V/2π²v³∫₀xᴅ(kT/ℏ)⁴[x³/(ex-1)]dx

=(kᴃ³V/6π²v³³N)9NkT∫₀xᴅ[x³/(ex-1)]dx=9NkT(T/θ)³∫₀xᴅ[x³/(ex-1)]dx

i.e. Define ℏω/kᴃ=θ , Debye temperature

ω=[6π²v³(N/V)]1/3 θ=ℏ[6π²v³(N/V)]1/3/kᴃ, ⸫ θ³=6π²v³³N/k³V

Cᵥ=U∕∂T|ᵥ=∂{3V/2π²v³∫₀ωᴅ[ω³/(eℏω/kT-1)]dω}∕∂T

=3V/2π²v³∫₀ωᴅ[ω³(-ℏω/kᴃ)(1/T²)eℏω/kT/(eℏω/kT-1)]dω

=(3V/2π²v³)(ℏ/kT²)∫₀ωᴅ[ω⁴eℏω/kT /(eℏω/kT-1)]dω

=(3V²/2π²v³kT²)∫₀xᴅ(kT/ℏ)⁴[x⁴ex/(ex-1)²](kT/ℏ)dx

=(3Vkᴃ⁴T³/2π²v³³)∫₀xᴅ[x⁴ex/(ex-1)²]dx

=(Vk³/6π²v³³N)9NkT³∫₀xᴅ[x⁴ex/(ex-1)²]dx=9Nkᴃ(T/θ)³∫₀xᴅ[x⁴ex/(ex-1)²]dx

      1. at high temperature, kT>>ℏω ⸫ x<<1 span="">

 

U=9NkT(T/θ)³∫₀xᴅ[x³/(ex-1)]dx, i.e. ex=1+x+x²/2!+x³/3!+... as |x|<<1 span="">

U=9NkT(T/θ)³∫₀xᴅ[x³/(1+x+x²/2!+x³/3!+...-1)]dx≈9NkT(T/θ)³∫₀xᴅx²dx

= 9NkT(T/θ)³(x³/3)=3NkT Cᵥ=U∕∂T|ᵥ=3Nk

 

      1. at low temperature, kT<<ℏω ⸫ x>>1 x=ℏω/kT→∞

1/(ex-1)=e-x/(1-e-x)=e-x(1+e-x+e-2x+e-3x+...)=e-x+e-2x+e-3x+...=∑ₛe-sx

∫₀[x³/(ex-1)]dx=∫₀x³dx∑ₛe-sx=∑ₛ∫₀x³e-sxdx=∑ₛ6/s⁴=π⁴/15, i.e. ζ(4)= π⁴/90

 

U=9NkT(T/θ)³∫₀[x³/(ex-1)]dx=(3π⁴/5)NkT(T/θ)³ Cᵥ=∂U∕∂T|ᵥ T³

U=(3π⁴/5)NkT(T/θ)³ Cᵥ=U∕∂T|ᵥ=(12π⁴/5)Nkᴃ(T/θ)³=234Nkᴃ(T/θ)³

“定性”physical understanding of T3-law

 

k wave vector, k=ω/v=ℏω/ℏv=kθ/ℏv

在低溫只有一部分k值供獻 kT=ℏωT/ℏv=(kᴃ/ℏv)T

the function of excited modes, 令密度一樣只須體積比即可

[4πk³/3]/[4πk³/3]=(k/k)³=(T/θ)³

U=3NkT(T/θ)³, Cᵥ=∂U∕∂T|ᵥ=12Nk(T/θ)³ T³

二次項對晶格thermal expansion無貢獻,簡化成U(r)=cx²-gx³-fx

在一度空間上算 x=[∫xP(x)]/P(x), 偏移平衡點的距離 i.e. P(x) exp[-U(r)/kT]

所測出=r0+x

x=(-xexp[-U(r)/kT]dx)/(-exp[-U(r)/kT]dx)

upper part:

-xexp[-U(r)/kT]dx=-xexp[-(cx²-gx³-fx)/kT]dx

=-xexp(-cx²/kT)exp[(gx³+fx)/kT]dx=-xexp(-cx²/kT)(1+gx³/kT+fx/kT)dx

=-xexp(-cx²/kT)∙(gx/kT)dx=(3π/4)∙(g/c5/2)∙(kT)3/2

lower part:

-exp[-U(r)/kT]dx=-exp[-(cx²-gx³-fx)/kT]dx

=-exp(-cx²/kT)exp[(gx³+fx)/kT]dx=-exp(-cx²/kT)(1+gx³/kT+fx/kT)dx

-exp(-cx²/kT)dx=(π/c)1/2∙(kT)1/2

x=[(3π/4)∙(g/c5/2)∙(kT)3/2]/[(π/c)1/2∙(kT)1/2]=(3g/4c²)kT

thermal conductivity

thermal flux, T2 > T1, J=-kdT/dx

3-D, J=-kT

Thermal flux: thermal energy transmitted across unit area per unit time, phonon攜帶能量:

Energy flux from the high temperature side:

J=½nvU(T+lT/x)=½nv[U(T)+lT/x(U/T)]=½nv[U(T)+clT/x ]

Energy flux from the cold temperature side:

J=½nv[U(T)-ClT/x ]

J=J₁-J₂=nvclT/x=Cvₓ∙lT/x=Cv²τT/x , l=vxτ

in 3-D ∵vₓ=v²/3 J=Cv²τT/3=CvlT/3, k=-Cvl/3

Two processes of phonon interaction

  1. N-process(Normal process)—three phonons process

k+k=k 能量一直往前傳遞,沒有阻力

no thermal resistivity or infinite thermal conductivity.

  1. U-process(Umklapp process)

k+k=k+G

Finite thermal resistivity and finite thermal conductivity.

 

 

 

 

 

 

 

 

註記: □= Planck constant

全站分類:知識學習 隨堂筆記
自訂分類:材料科學
上一則: 能帶理論
下一則: 光子(1)--晶體振盪
發表迴響

會員登入