Contents ...
udn網路城邦
Custom graphene foam processing China 》committed t
2025/04/23 11:11
瀏覽16
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Latex pillow OEM production in Taiwan

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.PU insole OEM production in Vietnam

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Taiwan high-end foam product OEM/ODM

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Indonesia OEM/ODM hybrid insole services

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Eco-friendly pillow OEM manufacturer Taiwan

Newly produced neurons (red) in the dentate gyrus with cell nuclei (blue) and a marker for immature neurons (green). Credit: Knobloch Lab – UNIL A team of biologists has discovered how to awaken neural stem cells and reactivate them in adult mice. Some areas of the adult brain contain quiescent, or dormant, neural stem cells that can potentially be reactivated to form new neurons. However, the transition from quiescence to proliferation is still poorly understood. A team led by scientists from the Universities of Geneva (UNIGE) and Lausanne (UNIL) has discovered the importance of cell metabolism in this process and identified how to wake up these neural stem cells and reactivate them. Biologists succeeded in increasing the number of new neurons in the brain of adult and even elderly mice. These results, promising for the treatment of neurodegenerative diseases, are to be discovered in the journal Science Advances. Stem cells have the unique ability to continuously produce copies of themselves and give rise to differentiated cells with more specialized functions. Neural stem cells (NSCs) are responsible for building the brain during embryonic development, generating all the cells of the central nervous system, including neurons. Neurogenesis Capacity Decreases With Age Surprisingly, NSCs persist in certain brain regions even after the brain is fully formed and can make new neurons throughout life. This biological phenomenon, called adult neurogenesis, is important for specific functions such as learning and memory processes. However, in the adult brain, these stem cells become more silent or ‘‘dormant’’ and reduce their capacity for renewal and differentiation. As a result, neurogenesis decreases significantly with age. The laboratories of Jean-Claude Martinou, Emeritus Professor in the Department of Molecular and Cellular Biology at the UNIGE Faculty of Science, and Marlen Knobloch, Associate Professor in the Department of Biomedical Sciences at the UNIL Faculty of Biology and Medicine, have uncovered a metabolic mechanism by which adult NSCs can emerge from their dormant state and become active. ‘‘We found that mitochondria, the energy-producing organelles within cells, are involved in regulating the level of activation of adult NSCs,’’ explains Francesco Petrelli, research fellow at UNIL and co-first author of the study with Valentina Scandella. The mitochondrial pyruvate transporter (MPC), a protein complex discovered eleven years ago in Professor Martinou’s group, plays a particular role in this regulation. Its activity influences the metabolic options a cell can use. By knowing the metabolic pathways that distinguish active cells from dormant cells, scientists can wake up dormant cells by modifying their mitochondrial metabolism. New Perspectives Biologists have blocked MPC activity by using chemical inhibitors or by generating mutant mice for the Mpc1 gene. Using these pharmacological and genetic approaches, the scientists were able to activate dormant NSCs and thus generate new neurons in the brains of adult and even aged mice. ‘‘With this work, we show that redirection of metabolic pathways can directly influence the activity state of adult NSCs and consequently the number of new neurons generated,’’ summarizes Professor Knobloch, co-lead author of the study. ‘‘These results shed new light on the role of cell metabolism in the regulation of neurogenesis. In the long term, these results could lead to potential treatments for conditions such as depression or neurodegenerative diseases’’, concludes Jean-Claude Martinou, co-lead author of the study. Reference: “Mitochondrial pyruvate metabolism regulates the activation of quiescent adult neural stem cells” by Francesco Petrelli, Valentina Scandella, Sylvie Montessuit, Nicola Zamboni, Jean-Claude Martinou and Marlen Knobloch, 1 March 2023, Science Advances. DOI: 10.1126/sciadv.add5220

Smell has the power to transport us across time and space. Smell has the power to transport us across time and space. It could be the sweet fragrance of jasmine, or the musty scent of algae. Suddenly, you are back at your childhood home, or under the burning sun of a distant shore. This association between smells and places seems to be a deeply embedded aspect of human cognition. But how are the two linked in the brain? A study published today (December 22, 2021) in the scientific journal Nature presents a potential explanation. A Neural Link between Smell and Space “Odour molecules do not inherently carry spatial information. However, animals in the wild use odors for spatial navigation and memory, which allow them to locate valuable resources such as food,” said Cindy Poo, the study’s first author. “We wanted to understand the neural basis of these behaviors, and so we decided to study how the brain combines olfactory and spatial information.” The researchers focused on the primary olfactory cortex. “The olfactory system is unique among the senses,” said the study’s senior author, Zachary Mainen, a principal investigator at the Champalimaud Centre for the Unknown in Portugal. “Only olfaction has direct reciprocal connections to the hippocampal system, which is involved in memory and navigation.” Neurons in the primary olfactory cortex create an odor-spatial map. Credit: Diogo Matias, Champalimaud Foundation Hippocampal neurons are famous for functioning as “place cells.” This is because each cell becomes active at a specific location within an environment. Together, these neurons encode the entire area, effectively creating a neural map of space. Hippocampal place cells, whose discovery in rats led to the Nobel Prize for Physiology or Medicine in 2014, are so reliable that scientists can tell where an animal is simply by observing their activity. “We know that the hippocampal system sends signals to the primary olfactory cortex,” said Poo. “So we suspected that this brain region might do more than just identify different smells.” Putting Olfactory Neurons to the Test To test this idea, the researchers developed a custom-made puzzle for rats, which are highly adept at olfaction. The rats sampled odors at the four ends of a plus-shaped maze. Then, depending on the scent, they had to figure out where the reward was hidden. “In this task, the rats had to learn and remember exact associations of odors and locations,” Poo explained. While the animals were solving the puzzle, the researchers monitored the activity of neurons in a part of the primary olfactory cortex called the posterior piriform cortex. “Neurons communicate with one another by emitting electric impulses,” explained Mainen. “By recording the electric signals emitted by hundreds of individual neurons in this brain area, we were able to decode what specific neurons cared about. For instance, whether they became active when the animal was smelling a specific odor, or when it was at a certain location in the maze.” “Our results exceeded our expectations,” said Poo. “We had predicted that some neurons here might care about location to a certain degree. “However, by carefully studying the activity of olfactory cortex neurons while the animal was navigating in the maze, we found that these neurons had learned an entire map of the environment.” Olfactory Neurons Encode Spatial Maps The researchers discovered a large population of neurons that, similarly to hippocampal place cells, became active at a specific location in the maze. Interestingly, the map didn’t cover the entire environment equally. Instead, it was largely restricted to behaviourally significant spots on the maze: where the animals experienced the odors and received rewards. “It appears that important locations were learned through experience and encoded into a map. It was remarkable that these cells in the olfactory system started responding in a given location when no odors were present, even when the rat was just walking around not engaged in the task,” Mainen added. A Scent of Space Is this how we come to form memories that link certain smells with specific places? “We found that some neurons here responded to smell, others to location, and yet others to both types of information to varying degrees. All these different neurons are mixed together, and are probably interconnected. Therefore, one can speculate that activating smell-space associations can happen through activity within this network,” suggested Poo. “This study also opens up a new window to understand how the senses are used for navigation and memory,” added Mainen. “Humans rely on visual landmarks more than odors, but it’s likely that the principles of how we remember where we’ve been and get to where we’re going are very similar,” he concluded. Reference: “Spatial maps in piriform cortex during olfactory navigation” by Cindy Poo, Gautam Agarwal, Niccolò Bonacchi and Zachary F. Mainen, 22 December 2021, Nature. DOI: 10.1038/s41586-021-04242-3

Membrane-separated compartments are visible inside the peroxisomes of 4-day-old Arabidopsis thaliana plant cells in this image from a confocal microscope. The cells were genetically modified to produce fluorescent proteins in both the membranes (green) and lumen (magenta) of the peroxisomes. Credit: Image courtesy of Zachary Wright/Rice University Newly discovered peroxisome subcompartments may enhance fat processing and reshape our understanding of cell metabolism and related diseases. Discovery “requires us to rethink everything we thought we knew about peroxisomes.” In his first year of graduate school, Rice University biochemist Zachary Wright discovered something hidden inside a common piece of cellular machinery that’s essential for all higher-order life from yeast to humans. What Wright saw in 2015 — subcompartments inside organelles called peroxisomes — is described in a study published today in Nature Communications. “This is, without a doubt, the most unexpected thing our lab has ever discovered,” said study co-author Bonnie Bartel, Wright’s Ph.D. advisor and a member of the National Academy of Sciences. “This requires us to rethink everything we thought we knew about peroxisomes.” Peroxisomes are compartments where cells turn fatty molecules into energy and useful materials, like the myelin sheaths that protect nerve cells. In humans, peroxisome dysfunction has been linked to severe metabolic disorders, and peroxisomes may have wider significance for neurodegeneration, obesity, cancer, and age-related disorders. Much is still unknown about peroxisomes, but their basic structure — a granular matrix surrounded by a sacklike membrane — wasn’t in question in 2015. Bartel said that’s one reason Wright’s discovery was surprising. Zachary Wright is a postdoctoral research associate in Rice University’s Department of BioSciences. Credit: Photo by Jeff Fitlow/Rice University Fluorescent Imaging Unveils Hidden Structures “We’re geneticists, so we’re used to unexpected things. But usually they don’t come in Technicolor,” she said, referring to another surprising thing about Wright’s find: beautiful color images that show both the walls of the peroxisome subcompartments and their interiors. The images were possible because of bright fluorescent reporters, glowing protein tags that Wright employed for the experiments. Biochemists modify the genes of model organisms — Bartel’s lab uses Arabidopsis plants — to tag them with fluorescent proteins in a controlled way that can reveal clues about the function and dysfunction of specific genes, including some that cause diseases in people, animals, and plants. Wright, now a postdoctoral research associate in Bartel’s lab, was testing a new reporter in 2015 when he spotted the peroxisome subcompartments. “I never thought Zach did anything wrong, but I didn’t think it was real,” Bartel said. She thought the images must be the result of some sort of artifact, a feature that didn’t really exist inside the cell but was instead created by the experiment. “If this was really happening, somebody would have already noticed it,” she recalled thinking. Bonnie Bartel is the Ralph and Dorothy Looney Professor of BioSciences at Rice University. Credit: Photo by Jeff Fitlow/Rice University “Basically, from that point on, I was trying to understand them,” Wright said. He checked his instruments, replicated his experiments and found no evidence of an artifact. He gathered more evidence of the mysterious subcompartments, and eventually wound up at Fondren Library, combing through old studies. Clues in Forgotten Studies from the 1960s “I revisited the really old literature about peroxisomes from the ’60s, and saw that they had observed similar things and just didn’t understand them,” he said. “And that idea was just lost.” There were a number of references to these inner compartments in studies from the ’60s and early ’70s. In each case, the investigators were focused on something else and mentioned the observation in passing. And all the observations were made with transmission electron microscopes, which fell out of favor when confocal microscopy became widely available in the 1980s. “It’s just much easier than electron microscopy,” Bartel said. “The whole field started doing confocal microscopy. And in the early days of confocal microscopy, the proteins just weren’t that bright.” Wright was also using confocal microscopy in 2015, but with brighter reporters that made it easier to resolve small features. Another key: He was looking at peroxisomes from Arabidopsis seedlings. “One reason this was forgotten is because peroxisomes in yeast and mammalian cells are smaller than the resolution of light,” Wright said. “With fluorescence microscopy, you could only ever see a dot. That’s just the limit that light can do.” Arabidopsis Seedlings Provide a Unique Window The peroxisomes he was viewing were up to 100 times larger. Scientists aren’t certain why peroxisomes get so large in Arabidopsis seedlings, but they do know that germinating Arabidopsis seeds get all of their energy from stored fat, until the seedling leaves can start producing energy from photosynthesis. During germination, they are sustained by countless tiny droplets of oil, and their peroxisomes must work overtime to process the oil. When they do, they grow several times larger than normal. “Bright fluorescent proteins, in combination with much bigger peroxisomes in Arabidopsis, made it extremely apparent, and much easier, to see this,” Wright said. But peroxisomes are also highly conserved, from plants to yeast to humans, and Bartel said there are hints that these structures may be general features of peroxisomes. “Peroxisomes are a basic organelle that has been with eukaryotes for a very long time, and there have been observations across eukaryotes, often in particular mutants, where the peroxisomes are either bigger or less packed with proteins, and thus easier to visualize,” she said. But people didn’t necessarily pay attention to those observations because the enlarged peroxisomes resulted from known mutations. Subcompartments Aid Fat Metabolism The researchers aren’t sure what purpose is served by the subcompartments, but Wright has a hypothesis. “When you’re talking about things like beta-oxidation, or metabolism of fats, you get to the point that the molecules don’t want to be in water anymore,” Wright said. “When you think of a traditional kind of biochemical reaction, we just have a substrate floating around in the water environment of a cell — the lumen — and interacting with enzymes; that doesn’t work so well if you’ve got something that doesn’t want to hang around in the water.” “So, if you’re using these membranes to solubilize the water-insoluble metabolites, and allow better access to lumenal enzymes, it may represent a general strategy to more efficiently deal with that kind of metabolism,” he said. Bartel said the discovery also provides a new context for understanding peroxisomal disorders. “This work could give us a way to understand some of the symptoms, and potentially to investigate the biochemistry that’s causing them,” she said. Reference: “Peroxisomes form intralumenal vesicles with roles in fatty acid catabolism and protein compartmentalization in Arabidopsis” by Zachary J. Wright and Bonnie Bartel, 4 December 2020, Nature Communications. DOI: 10.1038/s41467-020-20099-y Bartel is the Ralph and Dorothy Looney Professor of BioSciences at Rice. The research was supported by the National Institutes of Health (R01GM079177, R35GM130338, S10RR026399) and the Welch Foundation (C-1309).

DVDV1551RTWW78V



Vietnam custom neck pillow ODM 》long-term production solutions with flexible volumeBreathable insole ODM development Indonesia 》driving your product success through every stage of manufacturingGraphene insole manufacturer in Indonesia 》long-term production solutions with flexible volume

限會員,要發表迴響,請先登入