Contents ...
udn網路城邦
Vietnam insole ODM for global brands 》crafted to m
2025/04/24 00:12
瀏覽36
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Insole ODM production factory in Taiwan

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.High-performance insole OEM China

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Soft-touch pillow OEM service in Vietnam

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Memory foam pillow OEM factory Taiwan

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Graphene sheet OEM supplier Indonesia

Restoration of intestinal microflora functions reflects the success of FMT. Credit: Satoshi Uematsu, Osaka City University Osaka City University demonstrates success of fecal microbiota transplantation (FMT) by revealing the coordinated effort of bacteriophages (phages) and their host bacteria in restoring human intestinal flora. Clostridioides difficile infection (rCDI) occurs in the gut and is caused by the Gram-positive, spore-forming anaerobic bacterium, C. difficile when its spores attach to fecal matter and are transferred from hand to mouth by health care workers. Patients undergoing antibiotic treatment are especially susceptible as the microorganisms that maintain a healthy gut are greatly damaged by the antibiotics. Treatment of rCDI involves withdrawing the causative antibiotics and initiating antibiotic therapy, although this can be very challenging. Fecal microbiota transplantation (FMT) is considered an effective alternative therapy as it addresses the issue from the ground up by replacing the damaged microflora with a healthy one through a stool transplant. However, two deaths caused by antibiotic-resistant bacterial infections after FMT were reported in 2019, suggesting that a modification of FMT or alternatives is required to resolve safety concerns surrounding the treatment. Researchers at Osaka City University and the Institute for Medical Science, University of Tokyo tackled this challenge head on in a great study now published in Gastroenterology. Decoding the Gut’s Ecosystem: Bacteriome and Virome Using their original analysis pipeline reported in 2020, the researchers obtained intestinal bacterial and viral metagenome information from the fecal samples of nine rCDI patients from Brigham and Women’s Hospital in Boston who successfully had an FMT. They revealed the bacteria and phages involved in the pathogenesis of rCDI and the remarkable pathways important for the recovery of intestinal flora function. By revealing how the bacteriome and virome in the intestine work together as an organ, the research team was able to show how FMT can be as safe as swapping out a bad organ with a good one. “Intestinal microbiota should definitely be treated as an ‘organ’!” says principal investigator Professor Satoshi Uematsu, “FMT drastically changed the intestinal bacteriome and virome and is sure to restore the intestinal bacterial and viral functions.” In the post-COVID-19 world, rCDI will become one of the more pressing international diseases. There is no doubt that FMT is an important therapeutic strategy for rCDI. “In addition to a variety of clinical surveys, comprehensive metagenomic analysis is very important in considering the safety of FMT,” says Dr. Kosuke Fujimoto and Prof. Seiya Imoto. Reference: “Functional Restoration of Bacteriomes and Viromes by Fecal Microbiota Transplantation” by Kosuke Fujimoto, Yasumasa Kimura, Jessica R. Allegretti, Mako Yamamoto, Yao-zhong Zhang, Kotoe Katayama, Georg Tremmel, Yunosuke Kawaguchi, Masaki Shimohigoshi, Tetsuya Hayashi, Miho Uematsu, Kiyoshi Yamaguchi, Yoichi Furukawa, Yutaka Akiyama, Rui Yamaguchi, Sheila E. Crowe, Peter B. Ernst, Satoru Miyano, Hiroshi Kiyono, Seiya Imoto and Satoshi Uematsu, 9 February 2021, Gastroenterology. DOI: 10.1053/j.gastro.2021.02.013 Funding: Takeda Science Foundation, the Canon Foundation, Ministry of Education Culture Sports Science and Technology of Japan, the Center of Innovation Program from Japan

“Nanowires” produced by Geobacter in response to an electric field applied to electricity-producing biofilms. These nanowires are composed of cytochrome OmcZ and show 1000-fold higher conductivity and 3-times higher stiffness than the nanowires of cytochrome OmcS important in natural environments, allowing bacteria to transport electrons over 100-times their size. Credit: Sibel Ebru Yalcin. Design: Ella Maru Studio An ultra-stable protein nanowire made by bacteria provides clues to combating climate change. Rapid global warming poses a severe and immediate threat to life on Earth. Rising temperatures are caused in part by atmospheric methane, which is 30 times more potent than CO2 at trapping heat. Microbes produce half of this methane and as temperatures continue to rise, microbial growth is accelerated, leading to a higher production of greenhouse gases than can be absorbed by plants. This weakens the Earth’s ability to act as a carbon sink and contributes to a rise in global temperatures. A potential solution to this vicious circle could be another kind of microbe that eats up to 80% of methane flux from ocean sediments that protect the Earth. How microbes serve as both the biggest producers as well as consumers of methane has remained a mystery because they are very difficult to study in the laboratory. In the journal Nature Microbiology, surprising wire-like properties of a protein highly similar to the protein used by methane-eating microbes are reported by a Yale University team led by Yangqi Gu, and Nikhil Malvankar, of Molecular Biophysics and Biochemistry at Microbial Sciences Institute. The team had previously shown that this protein nanowire shows the highest conductivity known to date, allowing the generation of the highest electric power by any bacteria. But to date, no one had discovered how bacteria make them and why they show such extremely high conductivity. Nanowire’s Atomic Structure Using cryo-electron microscopy, Yangqi and the team were able to see the nanowire’s atomic structure and discover that hemes packed closely to move electrons very fast with ultra-high stability. It also explains how these bacteria can survive without oxygen-like membrane-ingestible molecules and form communities that can send electrons over 100 times bacterial size. Yangqi and the team also built nanowires synthetically to explain how bacteria make nanowires on demand. “We are using these heme wires to generate electricity and to combat climate change by understanding how methane-eating microbes use similar heme wires,” Malvankar said. Reference: “Structure of Geobacter cytochrome OmcZ identifies mechanism of nanowire assembly and conductivity” by Yangqi Gu, Matthew J. Guberman-Pfeffer, Vishok Srikanth, Cong Shen, Fabian Giska, Kallol Gupta, Yuri Londer, Fadel A. Samatey, Victor S. Batista and Nikhil S. Malvankar, 2 February 2023, Nature Microbiology. DOI: 10.1038/s41564-022-01315-5 Other authors are Malvankar Lab Members Matthew Guberman-Pfeffer, Vishok Srikanth, Cong Shen, Yuri Londer, Fadel Samatey with collaborators Prof. Victor Batista, Prof. Kallol Gupta, and Fabian Giska.

A parvalbumin interneuron (blue) surrounded by the perineuronal net. Credit: The Hospital for Sick Children (SickKids) SickKids researchers discover that a matrix called the perineuronal net may be responsible for why human memories become more specific throughout childhood. How do our brains develop the ability to form particular memories? A pioneering preclinical study conducted by a research group at The Hospital for Sick Children (SickKids) might have discovered a molecular cause behind memory changes during early childhood. The type of memories often associated with the term “memory” are event-based memories, or episodic memories, which are associated with a certain context. In contrast, the memories of young children are typically more general or “gist”-based and usually lack a specific contextual link. In a study published in Science led by Drs. Paul Frankland and Sheena Josselyn, both Senior Scientists in the Neurosciences & Mental Health program at SickKids, the researchers pinpoint the molecular mechanisms underlying the change from gist-like to episodic memory in mice. The team notes that understanding this change, which generally occurs between four and six years old in children, may inform new insights into child development research and conditions which affect the brain, from autism spectrum disorder to concussion. “Researchers have studied how episodic memory develops for decades, but thanks to the development of precise cellular interventions we were now able to examine this question at the molecular level for the very first time,” says Frankland, who also holds a Canada Research Chair in Cognitive Neurobiology. Growth of the Perineuronal Net May Trigger Changes in Memory In adults, memory traces (also known as engrams) are made up of 10 to 20 percent of neurons, but the overall size of these engrams is doubled in young children, with 20 to 40 percent of neurons making up an engram supporting a memory. So why the change? The hippocampus, a part of the brain responsible for learning and memory, contains a variety of neurons including a type of inhibitory cell called a parvalbumin-expressing (PV) interneuron. These inhibitory cells constrain the size of the engram and enable memory specificity. The research team identified that as these interneurons mature, memory transitions from general to more specific, and engrams are formed at the appropriate size. Using viral gene transfer technology developed by Dr. Alexander Dityatev, head of the Molecular Neuroplasticity research group at the German Center for Neurodegenerative Diseases, the researchers decided to delve deeper and explore the reason for this change. They found that as a dense extracellular matrix, known as the perineuronal net, develops around these interneurons in the hippocampus, the interneurons mature, shifting the way our brain creates engrams and stores memories. “Once we identified the perineuronal net as a key factor in interneuron maturation, we were able to accelerate the net’s development and create specific episodic, rather than general, memories in juvenile mice,” says Josselyn, who holds a Canada Research Chair in Circuit Basis of Memory. Informing New Insights Into Brain Function and Cognition While the team was able to trigger this change in memory type by accelerating the development of the perineuronal net, they also note that the reasons for the age difference between gist-like and episodic memories should not be overlooked. “When you think about what purpose memory serves, it makes sense that a child’s memory would function differently from an adult,” explains Adam Ramsaran, a Ph.D. candidate in the Frankland Lab and first author on the study. “At three years old, you don’t need to remember the specifics. A gist-like memory helps children build a large knowledge base which can get more specific as they grow older and have more experiences.” Building on these molecular discoveries, the research team sped up the growth of the perineuronal net by providing an enriched environment to allow the formation of specific memories, a finding which is helping to inform child development research underway at SickKids and the University of Toronto. “Outside of memory development, we also found similar maturation-type mechanisms involved in different sensory systems of the brain,” says Frankland. “The same brain mechanism may be used by several different brain regions for several different purposes, which presents exciting new opportunities for research and collaboration.” Reference: “A shift in the mechanisms controlling hippocampal engram formation during brain maturation” by Adam I. Ramsaran, Ying Wang, Ali Golbabaei, Stepan Aleshin, Mitchell L. de Snoo, Bi-ru Amy Yeung, Asim J. Rashid, Ankit Awasthi, Jocelyn Lau, Lina M. Tran, Sangyoon Y. Ko, Andrin Abegg, Lana Chunan Duan, Cory McKenzie, Julia Gallucci, Moriam Ahmed, Rahul Kaushik, Alexander Dityatev, Sheena A. Josselyn and Paul W. Frankland, 4 May 2023, Science. DOI: 10.1126/science.ade6530 This study was funded by Brain Canada, the Canadian Institutes of Health Research (CIHR), the University of Toronto, SickKids Research Institute, the German Research Foundation, the German Center for Neurodegenerative Diseases, the National Institutes of Health (NIH), Natural Sciences and Engineering Research Council of Canada (NSERC), Ontario Graduate Scholarship program, Ontario Trillium Scholarship program and the Vector Institute.

DVDV1551RTWW78V



ODM pillow factory for sleep product brands 》where innovation meets ergonomic comfort and market demandVietnam graphene product OEM service 》preferred by clients worldwide for fast turnaround and precisionCustomized sports insole ODM factory Taiwan 》where every detail is tailored to your brandis identity

限會員,要發表迴響,請先登入