Contents ...
udn網路城邦
One-stop OEM/ODM solution provider Taiwan 》your go
2025/05/01 13:24
瀏覽25
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Breathable insole ODM development Indonesia

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.High-performance graphene insole OEM factory Taiwan

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Memory foam pillow OEM factory China

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.ODM service for ergonomic pillows Indonesia

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Smart pillow ODM manufacturer China

Nanoplastics are tiny plastic particles measuring less than 100 nanometers in size. They are created from the breakdown of larger plastic debris, such as water bottles and plastic bags, and are prevalent in both marine and terrestrial environments. The small size of nanoplastics allows them to easily enter and interact with organisms, posing a potential threat to the ecosystem and food chain. The Impact of PET Particles on Zebrafish Was Examined by Researchers PET, the plastic commonly used to manufacture bottles, is a widespread presence in our ecosystem. Researchers from Leipzig University and the Helmholtz Centre for Environmental Research (UFZ) have recently collaborated on a study to examine the detrimental effects of small PET plastic particles on an organism’s metabolism and development. The results of their investigation have been published in the journal Scientific Reports. The rampant utilization of plastic is putting ecosystems globally at risk. One major worry is the proliferation of small plastic particles, commonly referred to as microplastics and nanoplastics. These tiny particles have been found in sources of drinking water, food, and even air. Nanoplastics can be absorbed by humans and animals through food as well as water. There are concerns that microplastics can accumulate in the body over time. Since their full effects on human health are still unknown, they are the subject of scientific research, as in the current study by Leipzig University. Polyethylene terephthalate, known as PET, is a widely used plastic. It is used to make plastic bags as well as practical containers for food and drinks. Little is known so far about the damaging effects of PET nanoplastics. In a recently published research project, scientists at Leipzig University focused on the effects of PET nanoplastics on zebrafish embryos. They found that the tiny plastic particles accumulated in several organs of the model animals, including the liver, intestine, kidney, and brain. In addition, PET nanoplastics caused behavioral abnormalities in the embryos, as less movement was observed. “Our study provides the very first insight into the toxicity pathways induced by PET nanoplastics and the underlying damaging mechanisms in intact zebrafish larvae. We found that liver function was significantly impaired and that there was oxidative stress. PET nanoplastics also affect the cellular membrane and energetics of living organisms,” said corresponding author Dr. Alia Matysik, a scientist at the Faculty of Medicine’s Institute of Medical Physics and Biophysics. PET Accumulation Alters Organism Biochemistry High-resolution magic-angle spinning (HRMAS), a non-invasive analytical technique that applies nuclear magnetic resonance (NMR) to solids and soft matter, was used to study zebrafish embryos. This scientific method has the advantage of being able to look into matter from the outside without, for example, having to damage tissue or insert instruments into the body. This study combined research on the metabolism of zebrafish cells and tissues, with cellular assays and behavioral tests. “We used state-of-the-art analytical NMR methods to obtain a comprehensive system-level understanding of the metabolic pathways affected by PET nanoplastics. We were able to observe how PET accumulation alters the biochemistry of an organism,” says Dr Matysik. “This research finding highlights the adverse effects of PET nanoplastics, which have been observed in zebrafish embryos and may also play a role in mammals and humans. While we do not yet have a clear answer to this question, it is now safe to assume that PET nanoplastics are disrupting our ecosystems. In any case, plastics should be prevented from entering the environment. Presumably, avoiding this form of waste will be the big challenge of the near future,” says Professor Jörg Matysik from the Institute of Analytical Chemistry, who was involved in his wife’s study. The scientists at Leipzig University plan to continue their research on this topic and also to investigate the effects of nanoplastics on brain function. “We’re already seeing PET nanoplastics accumulate in the brain. We now want to find out whether this has an impact on brain function and neurodegenerative diseases,” says Dr. Alia Matysik. Reference: “A mechanistic understanding of the effects of polyethylene terephthalate nanoplastics in the zebrafish (Danio rerio) embryo” by Narmin Bashirova, David Poppitz, Nils Klüver, Stefan Scholz, Jörg Matysik and A. Alia, 2 February 2023, Scientific Reports. DOI: 10.1038/s41598-023-28712-y

A view into the cell using an optical laser trap: it localizes microscopic particles in order to draw conclusions about their random trembling movement. A new approach developed by the Göttingen researchers makes it possible to deduce from these movements how hard, soft or liquid the inside of the cell is. Credit: Till Moritz Münker A research team at the University of Göttingen has developed a method for recognizing cell properties. Checking whether an avocado is hard or soft by looking at it? This would require recognizing how the plant cells behave behind the skin. The same applies to all other cells on our planet: Despite more than 100 years of intensive research, many of their properties remain hidden inside the cell. Researchers at the University of Göttingen describe in their recent publication in Nature Materials a new approach that can determine the particularly difficult-to-detect mechanical properties of the cell interior by taking a closer look. Cells are the basic units of all life and their precise understanding is a key factor in the progress made in medicine and biology. Nevertheless, research on them is still challenging because many methods destroy the cell during analysis. Researchers at the University of Göttingen now pursued a new idea: they used the random fluctuating movement that all microscopic particles perform. To do this, they first simulated the expected fluctuations and then checked the predictions using optical laser traps that can precisely control microparticles. Using this approach, the research team was able to analyze the movement of microscopic particles – with precision in the nanometer range and a time resolution of around 50 microseconds. In addition, the analysis also takes into account the history, i.e. past movements. It turned out that many objects always want to return to a certain place after having moved away randomly. The researchers used this tendency to return to a previous position to define a new quantification, the so-called mean back relaxation (MBR). Introducing Mean Back Relaxation (MBR) This new variable now serves as a kind of fingerprint: it contains information about the causes of the observed movements. This makes it possible for the first time to distinguish active processes from purely temperature-dependent processes (Brownian motion). “With MBR, we can obtain more information from the object movements than is possible with the usual approaches,” explains Professor Matthias Krüger from the Institute of Theoretical Physics at the University of Göttingen. In order to make statements about living cells, the researchers applied the method to the inside of living cells. “As our knowledge of the inside of cells is still limited, it was initially unclear whether the MBR could also be used here. When I saw the resulting curves, I could hardly believe my eyes, because the inside of cells could be described very precisely using the approaches we had originally worked out for much simpler situations,” marvels Professor Timo Betz from the Third Institute of Physics, head of the experiments. “The results show that the combination of a close look and new, intelligent analysis methods can provide insights into whether the inside of cells is soft, hard or liquid,” says first author of the study, Till Münker from the Third Institute of Physics. The work was co-funded by the European Union as part of an ERC Consolidator Grant. Reference: “Accessing activity and viscoelastic properties of artificial and living systems from passive measurement” by Till M. Muenker, Gabriel Knotz, Matthias Krüger and Timo Betz, 31 July 2024, Nature Materials. DOI: 10.1038/s41563-024-01957-2

A new study refutes the idea that intelligence equates to quicker thinking, revealing instead that people with higher fluid intelligence take more time on complex problems due to their brain’s synchronized activity allowing for deeper evidence consideration and problem-solving. Credit: Petra Ritter A study using brain simulations reveals that highly intelligent individuals take longer to solve complex problems, as better brain synchronization allows for deeper reasoning. Do intelligent people think faster than others when solving problems? New findings by researchers from the Human Brain Project at Charité University Berlin and their partner at University Pompeu Fabra in Barcelona question this deeply ingrained belief in the field of intelligence research. The results of their research were recently published in the journal Nature Communications. Taking a biologically inspired approach, they constructed 650 personalized brain network models (BNMs). These were created using data gathered from the Human Connectome Project and enabled the team to simulate the processes the brain undergoes during problem-solving. Observations from the brain simulations were compared to empirical data of the 650 participants taking the so-called Penn Matrix Reasoning Test (PMAT), consisting of a series of increasingly difficult pattern-matching tasks. The results of these were quantified into participants’ fluid intelligence (FI), which could roughly be described as the ability to take difficult decisions in new situations. Higher Intelligence Linked to Slower, More Thoughtful Processing “We found that people scoring higher on fluid intelligence (FI) took more time to solve the more difficult tasks compared to people with lower FI. They were only quicker when responding to simple questions,” explains Petra Ritter of Charité University, senior author of the study. “We first observed this in our simulations, and then only afterward we saw that the empirical data of participants taking the intelligence tests corresponded to this trend.” Ritter’s lab and many other research groups at HBP use brain simulation to complement observational data, in order to develop a theoretical framework of how the brain works. In this case, brain simulation has been employed to determine the link between functional and structural connectivity in the brain and cognitive performance. A more synchronized brain is better at solving problems, but not necessarily faster. “As synchronization is reduced, decision-making circuits in the brain jump faster to conclusions, while higher synchronization between brain regions allows for better integration of evidence and more robust working memory,” says Ritter. “Intuitively this is not so surprising: if you have more time and consider more evidence, you invest more in problem-solving and come up with better solutions. Here we not only show this empirically, but we demonstrate how the observed performance differences are a consequence of the dynamic principles in personalized brain network models. We thus present new evidence that challenges a common notion about human intelligence.” Challenging Traditional Views on Intelligence Previously established local circuit models of working memory (WM) and decision-making (DM), both important for intelligence, were plugged into The Virtual Brain (TVB), of which the latter provided a simulation at the whole-brain level. The simulations were run using a multi-scale brain modeling approach; brain imaging data were processed with automated containerized pipelines. The processing of the highly sensitive brain data took place within a secure Virtual Research Environment of EBRAINS Health Data Cloud. These technologies are accessible through EBRAINS to the global research community. The ultimate goal of the study is not to find out how fast you should think but rather to understand how biological networks determine decision-making for the development of bio-inspired tools and robotic applications. Modeling brain dynamics of intelligent decision-making is therefore a promising approach to building smart applications. “We think that biologically more realistic models may outperform classical A.I. in the future,” says Ritter. Reference: “Learning how network structure shapes decision-making for bio-inspired computing” by Michael Schirner, Gustavo Deco, and Petra Ritter, 23 May 2023, Nature Communications. DOI: 10.1038/s41467-023-38626-y

DVDV1551RTWW78V



Thailand custom product OEM/ODM services 》the preferred OEM/ODM solution for emerging and established brandsIndonesia insole OEM manufacturer 》preferred by clients worldwide for fast turnaround and precisionThailand anti-bacterial pillow ODM design 》expert-level OEM/ODM to support product innovation

限會員,要發表迴響,請先登入