Contents ...
udn網路城邦
Graphene insole manufacturer in Taiwan 》where craf
2025/04/29 02:55
瀏覽36
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Thailand graphene sports insole ODM

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.One-stop OEM/ODM solution provider Indonesia

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Custom foam pillow OEM in China

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Eco-friendly pillow OEM manufacturer Indonesia

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Graphene cushion OEM factory in China

Child wearing one of the MEG-OPM helmet style brain scanners. Credit: University of Nottingham Recent research using wearable brain scanners offers new insights into children’s brain development, tracking how critical milestones are linked to brain activity and exploring the foundations of neurodevelopmental conditions like autism. New research has provided the most detailed view yet of the developing brains of young children by using a wearable brain scanner to chart electrical activity. This study paves the way for new methods to monitor how essential developmental milestones, such as walking and talking, are supported by evolving brain functions, and to explore the origins of neurodevelopmental conditions like autism. The research team used a novel design of magnetoencephalography (MEG) scanner to measure brain electrophysiology in children as young as two. Scientists from the University of Nottingham’s School of Physics and Astronomy led the study, and the findings were published in the journal eLife. Brain cells operate and communicate by producing electrical currents. These currents generate tiny magnetic fields that can be detected outside the head. Researchers used their novel system to measure these fields, and mathematical modeling to turn those fields into high-fidelity images showing, millisecond-by-millisecond, which parts of the brain are engaged when we undertake tasks. Innovations in Wearable Brain Scanners The wearable brain scanner is based on quantum technology, and uses LEGO-brick-sized sensors – called optically pumped magnetometers (OPMs) – which are incorporated into a lightweight helmet to measure the fields generated by brain activity. The unique design means the system can be adapted to fit any age group, from toddlers to adults. Sensors can be placed much closer to the head, enhancing data quality. The system also allows people to move whilst wearing it, making it ideal for scanning children who find it hard to keep still in conventional scanners. 27 children (aged 2-13 years) and 26 adults (aged 21-34 years) took part in the study, which examined a fundamental component of brain function called ‘neural oscillations’ (or brain waves). Different areas of the brain are responsible for different aspects of behavior and neural oscillations promote communication between these regions. The research team measured how this connectivity changes as we grow up, and how our brains use short, punctate bursts of electrophysiological activity to inhibit networks of brain regions, and consequently to control how we attend to incoming sensory stimuli. Comments from the Research Leaders The work was jointly led by Dr. Lukas Rier, and Dr. Natalie Rhodes from the University of Nottingham’s School of Physics and Astronomy. Dr. Rier said: “The wearable system has opened up new opportunities to study and understand children’s brains at much younger ages than was previously possible with MEG. There are important reasons for moving to younger participants: from a neuroscientific viewpoint, many critical milestones in development occur in the first few years (even months) of life. If we can use our technology to measure the brain activities that underpin these developmental milestones, this would offer a new understanding of brain function.” The research, which was funded by the Engineering and Physics Research Council (EPSRC), included academic collaborators from SickKids Hospital in Toronto, Canada, and industry partners from US-based atomic device company QuSpin and Nottingham-based company Cerca Magnetics Limited. Dr. Rhodes was a University of Nottingham undergraduate student in Physics, and a postgraduate student when the work was carried out. She has now moved to a postdoctoral position in Toronto, and explains: “This study is the first of its kind using wearable MEG technology and provides a platform to launch new clinical research in childhood disorders. This means that we can begin to explore not only healthy brain development, but also the neural substrates that underlie atypical development in children.” World-renowned neuroscientist Dr. Margot Taylor – also an author on the paper – is leading research into autism in Toronto. She said: “Our work is dedicated to studying brain function in young children with and without autism. This study is the first to demonstrate that we can track brain development from a very young age. This is hugely exciting for possible translation to clinical research and work such as this helps us understand how autism develops.” Reference: “Tracking the neurodevelopmental trajectory of beta band oscillations with optically pumped magnetometer-based magnetoencephalography” by Lukas Rier, Natalie Rhodes, Daisie O Pakenham, Elena Boto, Niall Holmes, Ryan M Hill, Gonzalo Reina Rivero, Vishal Shah, Cody Doyle, James Osborne, Richard W Bowtell, Margot Taylor and Matthew J Brookes, 4 June 2024, eLife. DOI: 10.7554/eLife.94561 The University launched a spin-out company Cerca Magnetics in 2020 to commercialise OPM-MEG scanners and related technologies. The wearable system has been installed in a number of high-profile research institutions across the globe, including SickKids hospital in Toronto. The research teams in both institutions are now working together to expand the amount of neurodevelopmental data, on both healthy and atypical brain function

Using DNA technology and advanced bioinformatics analyses, the researchers identified distinct and marked changes in composition and function of the intestines’ trillions of bacteria and viruses in cases with anorexia nervosa. Credit: Søren Vestergaard/University of Copenhagen Gut microbiome disruptions and vitamin B1 deficiencies are linked to anorexia, offering potential for innovative treatments like probiotics and microbiome transplants. Contrary to common belief, anorexia nervosa is not just a desire to be skinny. Rather, it is a complicated mental illness that alters the brain’s control over hunger and self-perception of one’s body. Individuals with anorexia nervosa experience a transformation in their brain’s reward mechanism, making weight loss their primary focus. This results in drastic behavioral changes, including a drastic reduction in caloric intake. Approximately 1% of young people develop anorexia nervosa, and for about one in five, it becomes a chronic and potentially fatal condition. The majority of those diagnosed with anorexia nervosa are young females in their teenage years or early adulthood, accounting for about 90% of cases. The incidence of anorexia nervosa is too upward. The disease is caused by a complex interaction between various so-called vulnerability genes and environmental influences. However, it now also appears to be a result of a severe imbalance in the intestinal ecosystem of trillions of bacteria and viruses. This is the conclusion of a new study conducted by an international team headed by Danish scientists. The study involved 77 Danish girls and young women suffering from anorexia nervosa and 70 healthy individuals of the same gender. The results suggest that severe changes in the intestinal microbes and corresponding gut microbiome-produced metabolites in the blood may directly affect the development and retention of anorexia nervosa. To demonstrate this, the researchers transplanted stools from anorexia cases and healthy individuals, respectively, to bacteria-free mice, explains Professor and Principal Investigator Oluf Borbye Pedersen from the Novo Nordisk Foundation Center for Basic Metabolic Research at the University of Copenhagen. “The mice receiving stools from individuals with anorexia nervosa had trouble gaining weight, and analyses of gene activities in certain parts of their brain revealed changes in various genes regulating appetite. In addition, the mice that had been given stools from individuals affected with anorexia nervosa showed increased activity of genes regulating fat combustion likely contributing to their lower body weight,” explains Oluf Pedersen, who is the lead investigator of the study together with Clinical Professor René Støvring, who specializes in anorexia nervosa. Intestinal Bacteria Produce Reduced Amounts of Important Vitamin Using DNA technology and advanced bioinformatics analyses, the researchers identified distinct and marked changes in the composition and function of the intestines’ trillions of bacteria and viruses in cases with anorexia nervosa. Researchers compared the disruptions of the gut microbiome with blood molecules (metabolites) produced by the gut microbiome demonstrating associations between specific changes of the gut bacteria, blood bacterial molecules, and a number of personality traits such as distorted body image, drive for thinness, and refusal to eat in those affected by anorexia nervosa. “We also discovered that specific gut bacteria in women with anorexia nervosa produce less vitamin B1. Deficiency of B1 may lead to loss of appetite, various intestinal symptoms, anxiety, and isolating social behavior,” says Assistant Professor Yong Fan from the Novo Nordisk Foundation Center for Basic Metabolic Research, a leading young researcher of the study. “Moreover, our analysis of the intestinal microbiome revealed in anorexia cases different virus particles able to decompose lactic acid-producing bacteria in the intestines. Both findings may form the basis of future clinically controlled trials with B1 vitamin supplements and fermented food or probiotics containing various types of lactic acid bacteria,” he says. Years of Clinically Controlled Studies Are Ahead The new study is an example of basic research meant to explore whether a disturbed microbial ecosystem of the gut is a contributory factor in the development or retention of a chronic disease. And this may potentially be the case for anorexia nervosa. The next question is whether basic research can lay the foundation for clinically controlled trials exploring if current treatment for anorexia nervosa – involving psychotherapy, family counseling, and attempts to change the patient’s eating and exercise habits – may benefit from additional treatment aimed at normalizing the intestinal microbiome. “A complex disease like anorexia nervosa calls for personalized and multifactorial treatment. Our findings suggest that disruptions of the communities of gut bacteria and viruses and their functions as mirrored in altered microbiome-synthesized blood metabolites may be involved in the development and retention of the disease, providing a rationale for initiating clinically controlled trials. In such trials, clinical investigators will likely test the potential effects of an initial antibiotics intervention to reset the aberrant gut microbiome followed by weekly fecal microbiota transplantation (FMT) from young healthy donors for months. Such FMTs might be supplemented with B1 vitamin and multistrain probiotics. Whether interventions like the suggested will qualify for future adjunctive therapy to current conventional intervention, remain to be shown”, says Oluf Pedersen. Reference: “The gut microbiota contributes to the pathogenesis of anorexia nervosa in humans and mice” by Yong Fan, René Klinkby Støving, Samar Berreira Ibraim, Tuulia Hyötyläinen, Florence Thirion, Tulika Arora, Liwei Lyu, Evelina Stankevic, Tue Haldor Hansen, Pierre Déchelotte, Tim Sinioja, Oddny Ragnarsdottir, Nicolas Pons, Nathalie Galleron, Benoît Quinquis, Florence Levenez, Hugo Roume, Gwen Falony, Sara Vieira-Silva, Jeroen Raes, Loa Clausen, Gry Kjaersdam Telléus, Fredrik Bäckhed, Matej Oresic, S. Dusko Ehrlich and Oluf Pedersen, 17 April 2023, Nature Microbiology. DOI: 10.1038/s41564-023-01355-5 The international research team comprised Novo Nordisk Foundation Center for Basic Metabolic Research at the University of Copenhagen, the University of Southern Denmark and Odense University Hospital, Aalborg University Hospital, Aarhus University Hospital, the National Research Institute for Agriculture, Food and Environment in France, Center for Microbiology, VIB, Leuven, Belgium, University of Gothenburg and Ørebro University in Sweden, Turku University in Finland and Leiden University in the Netherlands.

New research suggests the Prochlorococcus microbe’s ancient coastal ancestors colonized the ocean by rafting out on chitin particles. Credit: Jose-Luis Olivares/MIT A new study shows that carbon-capturing phytoplankton colonized the ocean by rafting on particles of chitin. MIT researchers found that Prochlorococcus, a vital phytoplankton, likely used chitin from ancient exoskeletons as rafts to venture into open waters, evolving to absorb nearly as much CO2 as terrestrial forests and shaping Earth’s biosphere. Throughout the ocean, billions upon billions of plant-like microbes make up an invisible floating forest. As they drift, the tiny organisms use sunlight to suck up carbon dioxide from the atmosphere. Collectively, these photosynthesizing plankton, or phytoplankton, absorb almost as much CO2 as the world’s terrestrial forests. A measurable fraction of their carbon-capturing muscle comes from Prochlorococcus — an emerald-tinged free-floater that is the most abundant phytoplankton in the oceans today. But Prochlorococcus didn’t always inhabit open waters. Ancestors of the microbe likely stuck closer to the coasts, where nutrients were plentiful and organisms survived in communal microbial mats on the seafloor. How then did descendants of these coastal dwellers end up as the photosynthesizing powerhouses of the open oceans today? MIT scientists believe that rafting was the key. In a new study they propose that ancestors of Prochlorococcus acquired an ability to latch onto chitin — the degraded particles of ancient exoskeletons. The microbes hitched a ride on passing flakes, using the particles as rafts to venture further out to sea. These chitin rafts may have also provided essential nutrients, fueling and sustaining the microbes along their journey. Thus fortified, generations of microbes may have then had the opportunity to evolve new abilities to adapt to the open ocean. Eventually, they would have evolved to a point where they could jump ship and survive as the free-floating ocean dwellers that live today. “If Prochlorococcus and other photosynthetic organisms had not colonized the ocean, we would be looking at a very different planet,” says Rogier Braakman, a research scientist in MIT’s Department of Earth, Atmospheric, and Planetary Sciences (EAPS). “It was the fact they were able to attach to these chitin rafts that enabled them to establish a foothold in an entirely new and massive part of the planet’s biosphere, in a way that changed the Earth forever.” Braakman and his collaborators present their new “chitin raft” hypothesis, along with experiments and genetic analyses supporting the idea, in a study published on May 9 in PNAS. MIT co-authors are Giovanna Capovilla, Greg Fournier, Julia Schwartzman, Xinda Lu, Alexis Yelton, Elaina Thomas, Jack Payette, Kurt Castro, Otto Cordero, and MIT Institute Professor Sallie (Penny) Chisholm, along with colleagues from multiple institutions including the Woods Hole Oceanographic Institution. A Strange Gene Prochlorococcus is one of two main groups belonging to a class known as picocyanobacteria, which are the smallest photosynthesizing organisms on the planet. The other group is Synechococcus, a closely related microbe that can be found abundantly in ocean and freshwater systems. Both organisms make a living through photosynthesis. But it turns out that some strains of Prochlorococcus can adopt alternative lifestyles, particularly in low-lit regions where photosynthesis is difficult to maintain. These microbes are “mixotrophic,” using a mix of other carbon-capturing strategies to grow. Researchers in Chisholm’s lab were looking for signs of mixotrophy when they stumbled on a common gene in several modern strains of Prochlorococcus. The gene encoded the ability to break down chitin, a carbon-rich material that comes from the sloughed-off shells of arthropods, such as insects and crustaceans. “That was very strange,” says Capovilla, who decided to dig deeper into the finding when she joined the lab as a postdoc. For the new study, Capovilla carried out experiments to see whether Prochlorococcus can in fact break down chitin in a useful way. Previous work in the lab showed that the chitin-degrading gene appeared in strains of Prochlorococcus that live in low-light conditions, and in Synechococcus. The gene was missing in Prochlorococcus inhabiting more sunlit regions. In the lab, Capovilla introduced chitin particles into samples of low-light and high-light strains. She found that microbes containing the gene could degrade chitin, and of these, only low-light-adapted Prochlorococcus seemed to benefit from this breakdown, as they appeared to also grow faster as a result. The microbes could also stick to chitin flakes — a result that particularly interested Braakman, who studies the evolution of metabolic processes and the ways they have shaped the Earth’s ecology. “People always ask me: How did these microbes colonize the early ocean?” he says. “And as Gio was doing these experiments, there was this ‘aha’ moment.” Braakman wondered: Could this gene have been present in the ancestors of Prochlorococcus, in a way that allowed coastal microbes to attach to and feed on chitin, and ride the flakes out to sea? It’s All in the Timing To test this new “chitin raft” hypothesis, the team looked to Fournier, who specializes in tracing genes across species of microbes through history. In 2019, Fournier’s lab established an evolutionary tree for those microbes that exhibit the chitin-degrading gene. From this tree, they noticed a trend: Microbes start using chitin only after arthropods become abundant in a particular ecosystem. For the chitin raft hypothesis to hold, the gene would have to be present in ancestors of Prochlorococcus soon after arthropods began to colonize marine environments. The team looked to the fossil record and found that aquatic species of arthropods became abundant in the early Paleozoic, about half a billion years ago. According to Fournier’s evolutionary tree, that also happens to be around the time that the chitin-degrading gene appears in common ancestors of Prochlorococcus and Synecococchus. “The timing is quite solid,” Fournier says. “Marine systems were becoming flooded with this new type of organic carbon in the form of chitin, just as genes for using this carbon spread across all different types of microbes. And the movement of these chitin particles suddenly opened up the opportunity for microbes to really make it out to the open ocean.” The appearance of chitin may have been especially beneficial for microbes living in low-light conditions, such as along the coastal seafloor, where ancient picocyanobacteria are thought to have lived. To these microbes, chitin would have been a much-needed source of energy, as well as a way out of their communal, coastal niche. Braakman says that once out at sea, the rafting microbes were sturdy enough to develop other ocean-dwelling adaptations. Millions of years later, the organisms were then ready to “take the plunge” and evolve into the free-floating, photosynthesizing Prochlorococcus that exist today. “In the end, this is about ecosystems evolving together,” Braakman says. “With these chitin rafts, both arthropods and cyanobacteria were able to expand into the open ocean. Ultimately, this helped to seed the rise of modern marine ecosystems.” Reference: “Chitin utilization by marine picocyanobacteria and the evolution of a planktonic lifestyle” by Giovanna Capovilla, Rogier Braakman, Gregory P. Fournier, Thomas Hackl, Julia Schwartzman, Xinda Lu, Alexis Yelton, Krista Longnecker, Melissa C. Kido Soule, Elaina Thomas, Gretchen Swarr, Alessandro Mongera, Jack G. Payette, Kurt G. Castro, Jacob R. Waldbauer, Elizabeth B. Kujawinski, Otto X. Cordero and Sallie W. Chisholm, 9 May 2023, Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.2213271120 This research was supported by the Simons Foundation, the EMBO Long-Term Fellowship, and by the Human Frontier Science Program. This paper is a contribution from the Simons Collaboration on Ocean Processes and Ecology (SCOPE).

DVDV1551RTWW78V



Indonesia anti-bacterial pillow ODM design 》manufacturing with a focus on sustainability and comfortThailand neck support pillow OEM 》expert-level OEM/ODM to support product innovationChina ODM expert for comfort products 》your trusted source for functional product development

限會員,要發表迴響,請先登入