Contents ...
udn網路城邦
Custom foam pillow OEM in Indonesia 》delivering co
2025/04/28 14:35
瀏覽12
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

China OEM insole and pillow supplier

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Indonesia pillow OEM manufacturer

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Graphene sheet OEM supplier Vietnam

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Graphene insole manufacturer in Indonesia

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Pillow OEM for wellness brands China

A sidewinder snake is shown in a sand-filled arena that researchers used to understand the unique motion they use to climb sandy slopes. Credit: Rob Felt, Georgia Tech Sidewinder snakes evolved unique belly textures to support sideways locomotion, offering insights for bio-inspired robotics. The mesmerizing flow of a sidewinder moving obliquely across desert sands has captivated biologists for centuries and has been variously studied over the years, but questions remain about how the snakes produce their unique motion. Sidewinders are pit vipers, specifically rattlesnakes, native to the deserts of the southwestern United States and adjacent Mexico. Scientists had already described the microstructure of the skin on the ventral, or belly, surface of snakes. Many of the snakes studied, including all viper species, had distinctive rearward facing “microspicules” (micron-sized protrusions on scales) that had been interpreted in the context of reducing friction in the forward direction—the direction the crawling snake—and increasing friction in the backward direction to reduce slip.  Considered through the lens of a sidewinder’s peculiar form of locomotion, however, it seemed that these microspicules would not function in the same manner. But no one had examined the microstructure of sidewinders, nor of a handful of unrelated African vipers that also sidewind. Working with naturally-shed skins collected from snakes in zoos, researchers used atomic force microscopy to visualize and measure the microstructures of these scale protrusions in three species of sidewinding vipers as well as many other viper species for comparison. The results of the research, published this week in the journal Proceedings of the National Academy of Sciences, found that indeed the sidewinders have a unique structure distinct from other snakes.  Image shows scale microstructures found on sidewinder snakes. The structures differ from those of other snakes, and researchers believe those differences allow the unique movement of sidewinders on sand. Credit: Tai-De Li Cratered Textures Replace Microspicules The microspicules were absent in the African sidewinding species and reduced to tiny nubbins in the North American sidewinder. All three snakes also had distinctive crater-like micro-depressions producing a distinctive texture not seen in other snakes.  Daniel Goldman, Dunn Family Professor of Physics at the Georgia Institute of Technology, and Jennifer Rieser, working as a postdoctoral researcher in Goldman’s group and currently an assistant professor in the Department of Physics at Emory University, developed mathematical models to test how both the typical texture of rearward-directed microspicules and spicule-less cratered texture function as snakes interact with the ground. The models revealed that the microspicules would actually impede sidewinding, explaining their evolutionary loss in these species.  The models also revealed an unexpected result that microspicules function to improve performance of snakes that use lateral undulation to move. Lateral undulation is the typical side-to-side mode locomotion used by the majority of snake species. “This discovery adds a new dimension to our knowledge of the functionality of these structures, that is more complex than the previous ideas,” said Joseph Mendelson, director of research at Zoo Atlanta and adjunct associate professor in the Georgia Tech School of Biological Sciences. Image shows the microstructure of belly scales found on the Mexican lance-headed rattlesnake. The structures were different from those found on other snakes. Credit: Tai-De Li Textured Scales Function Like Corduroy The models indicate that the microspicules act a bit like corduroy fabric. “Friction is low when you run your finger along the length of the furrowed fabric—consistent with previous work—but the furrows produce significant friction when you move your finger sideways across the fabric texture,” said Goldman. The functionality of the distinct craters remains a mystery. The findings could be important to the development of future generations of robots able to move across challenging surfaces such as loose sand. “Understanding how and why this example of convergent evolution works may allow us to adapt it for our own needs, such as building robots that can move in challenging environments,” Rieser said. A Case of Convergent Evolution In terms of anatomy, this was a classic example of convergent evolution between a pair of snake species in Africa and a very distantly related snake in North America, Mendelson noted. Biogeographic reconstructions conducted by Jessica Tingle, a doctoral student at University of California Riverside, indicated that the African snakes are evolutionarily much older than the North American sidewinder, suggesting that the sidewinders represented an earlier phase in adaptation for sidewinding. Tai-De Li, then at Georgia Tech in the lab of Prof Elisa Riedo and now at the City University of New York, did the AFM measurements.  Drawing from the fields of evolutionary biology, living systems physics, and mathematical modeling, the team produced a study that explains some aspects of what these microstructures on the bellies of snakes do and how they evolved in snakes.  “Our results highlight how an integrated approach can provide quantitative predictions for structure-function relationships and insights into behavioral and evolutionary adaptions in biological systems,” the authors wrote.  For more on this research, read Physics of Snakeskin Sheds Light on Specialized Sidewinding Locomotion of Sidewinder Snakes. Reference: “Functional consequences of convergently evolved microscopic skin features on snake locomotion” by Jennifer M. Rieser, Tai-De Li, Jessica L. Tingle, Daniel I. Goldman and Joseph R. Mendelson III, 1 February 2021, Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.2018264118 This research was supported by the Georgia Tech Elizabeth Smithgall Watts Fund; National Science Foundation Physics of Living Systems Grants PHY-1205878 and PHY-1150760; and Army Research Office Grant W911NF-11-1-0514. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsoring agencies.

Zebrafish are small and transparent, which makes it easy to record the activity of the whole brain. Scientists from the RIKEN Center for Brain Science (CBS) and collaborators in Japan have discovered particular neurons in the brain that monitor whether predictions made by fish actually come true. By making use of a new virtual reality-outfitted aquarium where brain imaging of zebrafish can be done as they learn and navigate through virtual reality cues, researchers found neurons that allow efficient risk avoidance and create a “hazard map” in the brain that allows for escape to safety. Predicting the future is an integral part of decision-making for fish and humans alike. When real situations do not match expectations, the brain generates “prediction errors,” which let us know that our expectations were off. Expectations are formed by internal models of the environment, and just like people, the new study found that fish have such models in their brains. The researchers monitored prediction-error associated brain activity in real-time as zebrafish learned to avoid danger in their tank. They found that the fish tried to keep the prediction error low to efficiently avoid danger. Because risk avoidance is an evolutionarily conserved behavior, these results shed light on important brain circuits that are shared across all vertebrates, including humans. Schematic of the setup. Tail movements made by the fish were analyzed in real-time and the scene projected the fish was adjusted accordingly to make them feel like they were swimming. Manipulating the virtual reality allowed researchers to record brain activity related to prediction error — when reality doesn’t match what is predicted or expected. Zebrafish are small and transparent, which makes it easy to record the activity of the whole brain. In the experiment, the fish saw a choice between red or blue virtual reality zones as they virtually swam and learned to associate the colors of the virtual zones with danger or safety. The researchers were particularly interested in a front part of the brain called the telencephalon, which corresponds to the cerebral cortex and other structures in mammals, and which contributes to decision-making. As zebrafish learned to avoid danger in virtual reality, the time-lapse change in their brain activity was recorded, leading to the discovery of neurons that represent the prediction error. Distinct active populations of neurons emerged as fish started to learn that choosing the virtual route through blue surroundings led to danger and choosing the red route meant safety. Later, an experimental reversal of the association, in which red became dangerous instead of blue, led to an inactivation of these neurons. This told the researchers that the neurons were likely coding a behavioral rule, not simply the color that the fish were seeing. In another change to the virtual reality space, the scenery was altered so that it did not change based on the tail movements of the fish. For example, trying to swim forwards by flipping the tail did not make the view recede as expected. These manipulations revealed a group of neurons that was activated only when actions the fish thought would allow them to reach safety did not have the expected result. “We think this population of neurons is encoding a prediction error in the brain, comparing the actual view of their surroundings with the predicted view that they have learned would get them to safety if they behaved in a certain way,” says lead author Makio Torigoe. “Every animal has to make predictions for its future based on what it has learned before,” adds research team leader Hitoshi Okamoto. “Now we know how these predictions are compared to what animals actually encounter in the world, and which parts of the zebrafish brain drive the subsequent decision-making.” Reference: “Zebrafish capable of generating future state prediction error show improved active avoidance behavior in virtual reality” by Makio Torigoe, Tanvir Islam, Hisaya Kakinuma, Chi Chung Alan Fung, Takuya Isomura, Hideaki Shimazaki, Tazu Aoki, Tomoki Fukai and Hitoshi Okamoto, 29 September 2021, Nature Communications. DOI: 10.1038/s41467-021-26010-7

Scientists have discovered a new intestinal bacterium, Taurinivorans muris, which exclusively consumes taurine and produces hydrogen sulfide. While hydrogen sulfide has protective properties against certain pathogens, excessive amounts can harm gut health. The discovery provides insight into the roles of taurine and hydrogen sulfide in the gut, as well as their broader health implications. The findings are integral to developing future microbiome-based therapies. Taurine-Degrading Bacteria Influence Intestinal Microbiome A novel bacterium, Taurinivorans muris, which feeds on taurine and emits hydrogen sulfide, has been identified by researchers. This discovery offers valuable insights into gut health and lays the groundwork for future therapeutic interventions. An international team of scientists led by microbiologist Alexander Loy from the University of Vienna has discovered a new intestinal microbe that feeds exclusively on taurine and produces the foul-smelling gas hydrogen sulfide. The researchers have thus provided another building block in the understanding of those microbial processes that have fascinating effects on health. This is also true of Taurinivorans muris: the bacterium shows a protective function against Klebsiella and Salmonella, two important pathogens. The results are currently published today (September 18) in the journal Nature Communications. What’s That Smell? The gut microbiome mediates our health in a myriad of ways. One of those ways is by contributing to the levels of hydrogen sulfide – the toxic gas responsible for foul-smelling flatulence. Having small amounts of hydrogen sulfide in the gut is a good thing; in fact, it’s essential for a number of physiological processes, and can even protect against pathogens. Hydrogen sulfide-producing microbes in the gut may help “choke out” oxygen-dependent pathogens such as Klebsiella, making it harder for them to colonize. FISH: Fluorescence microscopy of Taurinivorans muris in pure culture. Credit: C: Huimin Ye However, excessive levels can have negative consequences and have been associated with gut inflammation and damage to the intestinal lining. Discovering the key players and processes that produce this noxious gas in our gut is a fundamental first step on the road to developing therapeutic interventions, for example, for inflammatory bowel disease. Keeping Young: The Role of Taurine The bacterium Bilophila wadsworthia is one of the most important taurine utilizers in humans. In the current study, researchers led by Alexander Loy at CeMESS, the Centre for Microbiology and Environmental Systems Science of the University of Vienna, have discovered a new genus of hydrogen sulfide-producing bacteria in the mouse intestine. “The bacterium we described has a rather unbalanced diet,” explains Loy, “it specializes in consuming taurine.” Taurine is a semi-essential amino acid, which we synthesize in small amounts in our liver. However, we get most of our taurine from our diets – especially meat, dairy, and seafood. SEM 1: Electron microscopy of Taurinivorans muris in pure culture. Credit: C: Huimin Ye Like hydrogen sulfide, taurine is implicated in a smorgasbord of physiological processes. Recent studies have found a link between taurine and healthy aging – it seems this nutrient may stave away age-related disease. In light of these findings, the discovery of a new gut microbe that feeds exclusively on taurine (aptly named Taurinivorans muris) is another piece of an exciting puzzle. “By isolating the first taurine degrader in the mouse gut, we’re one step closer to understanding how these gut microbes mediate animal and human health” explains Huimin Ye, lead author of the study. To access sufficient taurine in the gut, however, Taurinivorans muris needs the help of other gut microbes to release it from bile acids. Taurine-containing bile acids are produced in the liver and are increasingly released into the intestine during a high-fat diet to help our body digest fats. The activities of the bacteria in the intestine in turn influence the bile acid metabolism in the liver. The results of the Viennese researchers therefore also contribute to a better understanding of these complex interactions in bile acid metabolism, which has an impact on processes and diseases throughout the body. Taurine Degrading Microbes Protect Against Pathogens One of the most important functions of the symbiotic microbes in the gut is to defend against pathogens. The microbiome has a versatile arsenal of protective mechanisms – and utilizing taurine to create hydrogen sulfide is one of them. “Hydrogen sulfide may suppress the oxygen-dependent metabolism of some pathogens,” explains Ye. In the current study, the scientists discovered that Taurinivorans muris has a protective role against Klebsiella and Salmonella, two important gut pathogens. “The protective mechanism of Taurinivorans muris against pathogens may be via hydrogen sulfide but is essentially not yet fully understood” adds Alexander Loy. Taurine is one of the most important sources of hydrogen sulfide production in the gut. The study thus generates basic knowledge on the physiological interactions between the different gut microbes and their hosts, which is necessary to develop new microbiome-based therapies. Reference: “Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut” by Huimin Ye, Sabrina Borusak, Claudia Eberl, Julia Krasenbrink, Anna S. Weiss, Song-Can Chen, Buck T. Hanson, Bela Hausmann, Craig W. Herbold, Manuel Pristner, Benjamin Zwirzitz, Benedikt Warth, Petra Pjevac, David Schleheck, Bärbel Stecher and Alexander Loy, 18 September 2023, Nature Communications. DOI: 10.1038/s41467-023-41008-z

DVDV1551RTWW78V



Taiwan graphene product OEM factory 》where every detail is tailored to your brandis identityChina OEM insole and pillow supplier 》built to serve both niche and mass production needsInnovative insole ODM solutions in Taiwan 》a manufacturing partner you can rely on for quality and delivery

限會員,要發表迴響,請先登入