Contents ...
udn網路城邦
Indonesia neck support pillow OEM 》trusted by clie
2025/04/27 01:00
瀏覽20
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Thailand custom insole OEM supplier

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.China foot care insole ODM expert

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.ODM pillow for sleep brands China

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Graphene cushion OEM factory in Indonesia

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Indonesia graphene material ODM solution

Researchers have identified a brain activity pattern that functions as an internal compass for navigation, which could enhance understanding of neurological diseases and improve navigational tech in robotics and AI. A new study published in Nature Human Behaviour has identified a brain activity pattern that helps prevent us from getting lost. Researchers at the University of Birmingham and Ludwig Maximilian University of Munich have for the first time been able to pinpoint the location of an internal neural compass which the human brain uses to orientate itself in space and navigate through the environment. The research identifies finely tuned head direction signals within the brain. The results are comparable to neural codes identified in rodents and have implications for understanding diseases such as Parkinson’s and Alzheimer’s, where navigation and orientation are often impaired. Challenges and Methods in Neural Activity Measurement Measuring neural activity in humans while they are moving is challenging as most technologies available require participants to remain as still as possible. In this study, the researchers overcame this challenge by using mobile EEG devices and motion capture. First author Dr Benjamin J. Griffiths said: “Keeping track of the direction you are heading in is pretty important. Even small errors in estimating where you are and which direction you are heading in can be disastrous. We know that animals such as birds, rats, and bats have neural circuitry that keeps them on track, but we know surprisingly little about how the human brain manages this out and about in the real world.” Participant Experiments and Results A group of 52 healthy participants took part in a series of motion-tracking experiments while their brain activity was recorded via scalp EEG. These enabled the researchers to monitor brain signals from the participants as they moved their heads to orientate themselves to cues on different computer monitors. In a separate study, the researchers monitored signals from 10 participants who were already undergoing intercranial electrode monitoring for conditions such as epilepsy. All the tasks prompted participants to move their heads, or sometimes just their eyes, and brain signals from these movements were recorded from EEG caps, which measure signals from the scalp, and the intracranial EEG (iEEG), which records data from the hippocampus and neighbouring regions. After accounting for ‘confounds’ in the EEG recordings from factors such as muscle movement or position of the participant within the environment, the researchers were able to show a finely tuned directional signal, which could be detected just before physical changes in head direction among participants. Dr Griffiths added: “Isolating these signals enables us to really focus on how the brain processes navigational information and how these signals work alongside other cues such as visual landmarks. Our approach has opened up new avenues for exploring these features, with implications for research into neurodegenerative diseases and even for improving navigational technologies in robotics and AI.” In future work, the researchers plan to apply their learning to investigate how the brain navigates through time, to find out if similar neuronal activity is responsible for memory. Reference: “Electrophysiological signatures of veridical head direction in humans” by Benjamin J. Griffiths, Thomas Schreiner, Julia K. Schaefer, Christian Vollmar, Elisabeth Kaufmann, Stefanie Quach, Jan Remi, Soheyl Noachtar and Tobias Staudigl, 6 May 2024, Nature Human Behaviour. DOI: 10.1038/s41562-024-01872-1

Researchers at the RIKEN Center for Brain Science have discovered spinal cord neural mechanisms that allow for brain-independent motor learning, potentially revolutionizing recovery therapies for spinal cord injuries. Aya Takeoka and her team at the RIKEN Center for Brain Science in Japan have identified the neural pathways in the spinal cord that facilitate motor learning independently of the brain. Their research, published in the journal Science on April 11, found two critical groups of spinal cord neurons, one necessary for new adaptive learning, and another for recalling adaptations once they have been learned. The findings could help scientists develop ways to assist motor recovery after spinal cord injury. Scientists have known for some time that motor output from the spinal cord can be adjusted through practice even without a brain. This has been shown most dramatically in headless insects, whose legs can still be trained to avoid external cues. Until now, no one has figured out exactly how this is possible, and without this understanding, the phenomenon is not much more than a quirky fact. As Takeoka explains, “Gaining insights into the underlying mechanism is essential if we want to understand the foundations of movement automaticity in healthy people and use this knowledge to improve recovery after spinal cord injury.” In this study, spinal cords that associated limb position with an unpleasant experience learned to reposition the limb after only 10 minutes, and retained a memory the next day. Spinal cords that received random unpleasantness did not learn. Credit: RIKEN Before jumping into the neural circuitry, the researchers first developed an experimental setup that allowed them to study mouse spinal cord adaptation, both learning and recall, without input from the brain. Each test had an experimental mouse and a control mouse whose hind legs dangled freely. If the experimental mouse’s hindleg drooped down too much it was electrically stimulated, emulating something a mouse would want to avoid. The control mouse received the same stimulation at the same time, but was not linked to its own hindleg position. Observations of Immediate Learning and Memory Retention After just 10 minutes, they observed motor learning only in the experimental mice; their legs remained high up, avoiding any electrical stimulation. This result showed that the spinal cord can associate an unpleasant feeling with leg position and adapt its motor output so that the leg avoids the unpleasant feeling, all without any need for a brain. Twenty-four hours later, they repeated the 10-minute test but reversed the experimental and control mice. The original experimental mice still kept their legs up, indicating that the spinal cord retained a memory of the past experience, which interfered with new learning. Having thus established both immediate learning, as well as memory, in the spinal cord, the team then set out to examine the neural circuitry that makes both possible. They used six types of transgenic mice, each with a different set of spinal neurons disabled, and tested them for motor learning and learning reversal. They found that mice hindlimbs did not adapt to avoid the electrical shocks after neurons toward the top of the spinal cord were disabled, particularly those that express the genePtf1a. When they examined the mice during learning reversal, they found that silencing the Ptf1a-expressing neurons had no effect. Instead, a group of neurons in the bottom, ventral, part of the spinal cord that express the En1 gene was critical. When these neurons were silenced the day after learning avoidance, the spinal cords acted as if they had never learned anything. The researchers also assessed memory recall on the second day by repeating the initial learning conditions. They found that in wildtype mice, hindlimbs stabilized to reach the avoidance position faster than they did on the first day, indicating recall. Exciting the En1 neurons during recall increased this speed by 80%, indicating enhanced motor recall. “Not only do these results challenge the prevailing notion that motor learning and memory are solely confined to brain circuits,” says Takeoka, “but we showed that we could manipulate spinal cord motor recall, which has implications for therapies designed to improve recovery after spinal cord damage.” Reference: “Two inhibitory neuronal classes govern acquisition and recall of spinal sensorimotor adaptation” by Simon Lavaud, Charlotte Bichara, Mattia D’Andola, Shu-Hao Yeh and Aya Takeoka, 11 April 2024, Science. DOI: 10.1126/science.adf6801

A representation of the SARS-CoV spike protein structures. Credit: Image courtesy of Mahmoud Moradi The coronaviruses that cause SARS and COVID-19 have spike proteins that move into “active” and “inactive” positions, and new research indicates how those molecular movements may make the COVID-19 virus more infectious compared to the SARS virus. Coronavirus outbreaks have occurred periodically, but none have been as devastating as the COVID-19 pandemic. Vivek Govind Kumar, a graduate student, and colleagues in the lab of Mahmoud Moradi at the University of Arkansas, have discovered one reason that likely makes SARS-CoV-2, the virus that causes COVID-19, so much more infectious than SARS-CoV-1, which caused the 2003 SARS outbreak. Moradi will present the research on Thursday, February 25 at the 65th Annual Meeting of the Biophysical Society The first step in coronavirus infection is for the virus to enter cells. For this entry, the spike proteins on the outside of the SARS-CoV virus must reposition. Scientists know the position of the “inactive” and “active” states of the spike proteins of both the SARS-CoV-1 and -2 viruses, but Moradi and colleagues wanted to study how the spikes moved from one position to another and the dynamics of those movements. They turned to molecular simulations, performed at the Texas Advanced Computing Center and the Pittsburgh Supercomputing Center. “We discovered in these simulations that SARS-CoV-1 and SARS-CoV-2 have completely different ways of changing their shape, and on different time scales,” Moradi says. “SARS-CoV-1 moves faster, it activates and deactivates, which doesn’t give it as much time to stick to the human cell because it’s not as stable. SARS-CoV-2, on the other hand, is stable and ready to attack,” he added. Designing Therapeutics Based on Spike Behavior There is a region at the tail end of the spike protein that has largely been ignored in research, Moradi says, but that piece is important in the stability of the protein. Mutations in that region could affect the transmissibility, he says, and are worth paying attention to. The other implication for their research is “we could design therapeutics that alter the dynamics and make the inactive state more stable, thereby promoting the deactivation of SARS-CoV-2. That is a strategy that hasn’t yet been adopted,” Moradi explained. It is valuable to be able to do these kinds of simulations, Moradi says, in the event a new coronavirus emerges, or SARS-CoV-2 mutates so that they can predict if the new virus or variant could be higher in transmissibility and infection. They have now begun studying the new SARS-CoV-2 B.1.1.7 variant in the lab to detect differences in its movements.

DVDV1551RTWW78V



Ergonomic insole ODM support China 》minimizing lead time, maximizing product valueInsole ODM production factory in Taiwan 》a manufacturing partner you can rely on for quality and deliveryEco-friendly pillow OEM manufacturer Thailand 》where craftsmanship meets innovation and ESG values

限會員,要發表迴響,請先登入