Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
ODM pillow for sleep brands Indonesia
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Graphene-infused pillow ODM China
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Custom foam pillow OEM production factory in Taiwan
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Thailand pillow ODM development service
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.One-stop OEM/ODM solution provider Indonesia
PNA5 could help protect brain cells and manage Parkinson’s cognitive symptoms by controlling inflammation and immune response, according to recent research. Credit: SciTechDaily.com A study from the University of Arizona shows that the protein PNA5 helps protect brain cells, offering a promising avenue for treating cognitive symptoms in Parkinson’s disease, a condition currently lacking effective cognitive therapies. Parkinson’s disease is a neurological disorder primarily known for causing tremors, stiffness, slow movement, and poor balance. However, it also causes cognitive symptoms that can advance to Parkinson’s dementia. Although there are medications available to manage the motor symptoms of the disease, there are currently no effective treatments for its cognitive symptoms. “When patients are diagnosed with Parkinson’s disease, 25% to 30% already have mild cognitive impairment. As the disorder progresses into its later stages, 50% to 70% of patients complain of cognitive problems,” said Lalitha Madhavan, MD, PhD, an associate professor of neurology at the University of Arizona College of Medicine – Tucson. “The sad part is we don’t have a clear way to treat cognitive decline or dementia in Parkinson’s disease.” Kelsey Bernard, PhD, was the first author on a paper that showed the protein PNA5 could possibly prevent cognitive decline in people who have Parkinson’s disease and related disorders. Credit: Kris Hanning, U of A Health Sciences Office of Communications Research Insights on PNA5’s Protective Effects A team of researchers led by Madhavan, in collaboration with Torsten Falk, PhD, a research professor of neurology, is investigating PNA5, which was developed by Meredith Hay, PhD, a professor of physiology. They recently published a paper in Experimental Neurology showing that, in an animal model, PNA5 appears to have a protective effect on brain cells. “With PNA5, we’re targeting cognitive symptoms but, in particular, we’re trying to prevent further degeneration from occurring,” said Kelsey Bernard, PhD, a postdoctoral researcher in the Madhavan Lab and the study’s first author. “By going down the protective route, we can hopefully prevent cognitive decline from continuing.” Lalitha Madhavan, MD, PhD, is an associate professor of neurology at the College of Medicine – Tucson. Credit: Kris Hanning, U of A Health Sciences Office of Communications Dialing Back Inflammation The causes of neurodegenerative diseases are largely mysterious, but the current thinking is that they involve inflammation, a normal function of the immune system that is usually short-lived in response to infections or wounds. If inflammation becomes chronic, however, it can do lasting damage. Bernard said inflammation plays a significant role in Parkinson’s disease when microglia, specific immune cells in the brain, enter a supercharged state. “Normally, microglia are looking for things like viruses or injury and secreting substances that block off the damage,” she said. “In Parkinson’s disease, when they’re constantly activated, microglia can propagate further damage to the surrounding tissue. That’s what we see in Parkinson’s brains, particularly in regions associated with cognitive decline.” Torsten Falk, PhD, is a research professor in the College of Medicine – Tucson’s Department of Neurology. Credit: Biocommunications, U of A Health Science Office of Communications The team found that these supercharged microglia flooded their environments with an inflammatory chemical, supporting previous research linking that chemical with cognitive status. “This inflammatory chemical can directly interact with neurons in a region of the brain important for learning and memory,” Bernard said. After treatment with PNA5, researchers watched blood levels of the inflammatory chemical decrease, correlating with a reduced loss in brain cells. They said they believe PNA5 dials back the microglia’s overly active immune response and brings it closer to a normal state. The researchers hope that by suppressing the production of this inflammatory chemical, PNA5 can protect the brain. Expanding Treatment Options When developing PNA5, Hay, in collaboration with Robin Polt, PhD, a professor of chemistry and biochemistry at the U of A’s College of Science, made small tweaks to the structure of a chemical the body naturally makes, enhancing its ability to enter the brain and stay there longer. Hay is studying PNA5’s potential in treating other types of dementia, such as vascular dementia and Alzheimer’s disease. “It has already been tried and tested in other models, and that makes me more optimistic,” said Madhavan, who, along with Polt and Hay, is a member of the BIO5 Institute. She said she hopes the team’s investigations into PNA5 will eventually lead to a drug that people with Parkinson’s disease can take to alleviate cognitive symptoms, though they may still need to take other drugs to control motor symptoms. “I think about it as a cog in the wheel — there are going to be other drugs that support other aspects of Parkinson’s. Taking multiple drugs is never fun, but it’s a complex condition and there can only be complex solutions,” she said. “The beauty of the brain is the interconnectedness, but it also adds to the complexity.” The researchers said their next steps are to conduct further studies to identify biomarkers, refine dosages, investigate sex differences, and determine how PNA5 might work. “PNA5 seems to have a possibility of stopping or delaying Parkinson’s progression to some extent and could improve the health of brain cells or prevent cells from dying,” Madhavan said. The publication was the product of Bernard’s doctoral research, which she performed under the mentorship of co-senior authors Madhavan and Falk. “The brain is the most interesting part of the body,” Bernard said. “These cells are fascinating — what causes them to work correctly and what causes them to go awry.” Reference: “The angiotensin (1–7) glycopeptide PNA5 improves cognition in a chronic progressive mouse model of Parkinson’s disease through modulation of neuroinflammation” by Kelsey Bernard, Jesus A. Mota, Paige Wene, Mandi J. Corenblum, Juben L. Saez, Mitchell J. Bartlett, M. Leandro Heien, Kristian P. Doyle, Robin Polt, Meredith Hay, Lalitha Madhavan and Torsten Falk, 15 August 2024, Experimental Neurology. DOI: 10.1016/j.expneurol.2024.114926 This research was supported in part by the Michael J. Fox Foundation under award no. MJFF 024922, the National Institutes of Health under award no. T32 AG1081797, and the ARCS Foundation Scholarship.
A new research study reveals how a common type of epigenetic modification can be transmitted via sperm not only from parents to offspring, but to the next generation (“grandoffspring”) as well. Changing the epigenetic marks on chromosomes results in altered gene expression in offspring and in grandoffspring, demonstrating ‘transgenerational epigenetic inheritance.’ Without changing the genetic code in the DNA, epigenetic modifications can alter how genes are expressed, affecting an organism’s health and development. It was once a radical idea that such changes in gene expression can be inherited. Now there is a growing body of evidence behind it, but the mechanisms involved are still poorly understood. Scientists at the University of California, Santa Cruz show in a new study how a common type of epigenetic modification can be transmitted via sperm not only from parents to offspring, but to the next generation (“grandoffspring”) as well. This is called “transgenerational epigenetic inheritance.” It may explain how a person’s health and development could be influenced by the experiences of his or her parents and grandparents. Published the week of September 26 in the Proceedings of the National Academy of Sciences (PNAS), the study focused on a particular modification of a histone protein that changes the way DNA is packaged in the chromosomes. This widely studied epigenetic mark (called H3K27me3) is known to turn off or “repress” the affected genes. It is found in all multicellular animals—from humans to the nematode worm C. elegans used in this research. How Histone Marks Affect Gene Expression “These results establish a cause-and-effect relationship between sperm-transmitted histone marks and gene expression and development in offspring and grandoffspring,” said corresponding author Susan Strome. She is professor emerita of molecular, cell and developmental biology at UC Santa Cruz. Histones are the primary proteins involved in the packaging of DNA in the chromosomes. The epigenetic mark known as H3K27me3 refers to methylation of a certain amino acid in the histone H3. This results in the DNA being more densely packaged, making the genes in that region less accessible for activation. In a study of epigenetic inheritance, researchers created embryos of the worm C. elegans that inherited egg chromosomes properly packaged with the epigenetic mark H3K27me3 and sperm chromosomes lacking the mark. The one-cell embryo on the left inherited the pink chromosomes from the egg and the green chromosomes from the sperm, the colors showing the presence or absence of H3K27me3. The two-cell embryo on the right shows the egg and sperm chromosomes united in each nucleus. Credit: Photo by Laura Gaydos In the recent work, this histone mark was selectively stripped from the chromosomes of C. elegans sperm, which were then used to fertilize eggs with fully marked chromosomes. In the resulting offspring, the scientists observed abnormal gene expression patterns, with genes on the paternal chromosomes (inherited from the sperm) turned on or “upregulated” in the absence of the repressive epigenetic mark. This resulted in tissues turning on genes they would not normally express. For instance, germline tissue (which produces eggs and sperm) turned on genes normally expressed in neurons. “In all the tissues we analyzed, genes were aberrantly expressed, but different genes were turned up in different tissues, demonstrating that the tissue context determined which genes were upregulated,” Strome said. Analysis of the chromosomes in the offspring’s germline tissue showed that the upregulated genes still lacked the repressive histone mark, while the mark had been restored on the genes that were not upregulated. Passing Epigenetic Marks to Future Generations “In the germline of the offspring, some genes were aberrantly turned on and stayed in the state lacking the repressive mark, while the rest of the genome regained the mark, and that pattern was passed on to the grandoffspring,” Strome explained. “We speculate that if this pattern of DNA packaging is maintained in the germline, it could potentially be passed on for numerous generations.” In the grandoffspring, the investigators observed a range of developmental effects, including some worms that were completely sterile. This mix of outcomes is due to how chromosomes get distributed during the cell divisions that produce sperm and eggs, resulting in many different combinations of chromosomes that can be passed on to the next generation. Researchers in Strome’s lab have been studying epigenetic inheritance in C. elegans for years, and she said this paper represents the culmination of their work in this area. She noted that other scientists researching mammalian cells in culture have reported results very similar to her lab’s findings in worms, although those studies did not show transmission across multiple generations. “This looks like a conserved feature of gene expression and development in animals, not just a weird worm-specific phenomenon,” she said. “We can do amazing genetic experiments in C. elegans that can’t be done in humans, and the results of our experiments in worms can have broad implications in other organisms.” Reference: “Sperm-inherited H3K27me3 epialleles are transmitted transgenerationally in cis” Kiyomi Raye Kaneshiro, Thea A. Egelhofer, Andreas Rechtsteiner, Chad Cockrum and Susan Strome, 26 September 2022, Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.2209471119 The co-first authors of the paper are Kiyomi Kaneshiro, who worked on the study as a graduate student in Strome’s lab and is currently a postdoctoral researcher at the Buck Institute for Research on Aging, and UCSC research associate Thea Egelhofer. The coauthors also include bioinformaticist Andreas Rechtsteiner and graduate student Chad Cockrum (now at IDEXX Laboratories). This work was supported by the National Institutes of Health.
The Svalbard reindeer, despite significant inbreeding and low genetic diversity, boasts a robust population of over 20,000, having adapted to Arctic conditions with unique traits like smaller size and the ability to digest mosses. Although they have evolved rapidly to past environmental changes, scientists fear the pace of current global warming may outstrip their capacity to adapt, posing a serious threat to their survival. Reindeer have endured for over 7,000 years on the Arctic archipelago of Svalbard. Will they be able to withstand climate change? Despite the challenges of inbreeding and limited genetic diversity, the Svalbard reindeer have remarkably adapted to harsh living conditions in an extraordinarily short period, a situation researchers term a genetic paradox. However, the question remains: can they withstand the impacts of climate change? “Of all the subspecies of reindeer found in the high north, the Svalbard reindeer has the most inbreeding and the lowest genetic diversity,” says Nicolas Dussex, a postdoc at the Norwegian University of Science and Technology’s (NTNU) Department of Natural History. It was only 7000-8000 years ago that the first reindeer migrated to Svalbard, most likely from Russia via Novaya Zemlya and the islands of Franz Josef Land. Perhaps there were no more than a few animals that established themselves on the Arctic archipelago. Evolutionary theory suggests this is a poor starting point since inbreeding can quickly lead to an accumulation of harmful mutations and genetic variants followed by disease and death. Among their many adaptations to life on the Svalbard, reindeer have developed the ability to digest moss instead of lichen. Credit: Bart Peeters Rapid adaptation to an extreme environment But this has not prevented the Svalbard reindeer from evolving into what is today a viable population of more than 20,000 animals. “Despite the low genetic diversity, they have managed to develop a number of adaptations to life in the High Arctic. They are, for example, smaller in size and have shorter legs than other northern reindeer and caribou subspecies,” says Dussex. The ability to digest mosses in the absence of lichens, and to adjust their circadian rhythm to the extreme seasonal variations on Svalbard, are also traits the Svalbard reindeer have developed over the relatively short time they have lived isolated on the archipelago. Now, researchers at NTNU and collaborating institutions have analyzed genetic samples from 91 reindeer to see how they differ from their relatives on the mainland. Svalbard reindeer. Credit: Bart Peeters “Populations living on isolated islands are often small and are well-suited to studying genetic problems. The Svalbard reindeer has been isolated for at least 7000 years and has a very high degree of inbreeding. In addition, they were nearly extinct in the early 1900s due to excessive hunting,” says Michael D. Martin, a professor at NTNU’s Department of Natural History. Getting Rid of Harmful Mutations This near-extinction, where only a few individuals with their unique genetic variants survive, is called a bottleneck in population biology. “In this case, we are dealing with a population that suffers from a high degree of inbreeding, which is usually bad news for a small population. But inbreeding can also help a population to get rid of harmful mutations, a phenomenon technically called ‘purging’,” says Martin. Mathilde Le Moullec, a postdoc at NTNU, has collected “sub-fossil” bone samples from reindeer on Svalbard. The bones can be used to study how the genetics of the reindeer have changed over the centuries. Credit: Brage Bremset Hansen, NTNU In a population with a high degree of inbreeding, offspring are more likely to inherit harmful mutations from both mother and father. Therefore, these “dangerous” mutations more quickly manifest in the form of genetic diseases and poorer health. Offspring carrying these mutations become less “fit”, and they will either die before they have the chance to reproduce or they will have fewer offspring. Consequently, these dangerous mutations are less likely to be passed on to subsequent generations. “Paradoxically, in the long run, inbreeding can be beneficial,” says Dussex. Punctuated Evolution or Steady and Continuous? Similar phenomena have been observed elsewhere in nature. In New Zealand, Kakapo parrots (Strigops habroptilus), which had lived isolated on the islands for at least 10,000 years, became endangered after the arrival of non-native species brought to the islands by humans. In 1995, there were only 60 individuals left, but today the population has grown to around 200. Here too, Dussex and his colleagues found that harmful genetic variants had disappeared from the population thanks to a long period of inbreeding. “This is important knowledge when it comes to population management. The fact that the Svalbard reindeer is in relatively good genetic condition considering harmful mutations, is good news,” says Brage Bremset Hansen, professor of conservation biology at NTNU’s Department of Biology and Center for Biodiversity Dynamics. Hansen is also a senior researcher at the Norwegian Institute for Nature Research (NINA). This knowledge about the Svalbard reindeer can also change the way researchers study the effects of genetic bottlenecks, Dussex said. “What we still do not know enough about is how quickly such harmful mutations are selected against. We will continue to work on this, using DNA samples collected from bone remains and antlers of animals that lived several thousand years ago. This way, we can see whether these mutations have disappeared quickly over a few centuries or if it has happened gradually over several thousand years,” he said. The researchers are also very interested in examining the development of beneficial mutations, which have allowed the Svalbard reindeer to adapt to the unique ecosystem. “This is a ‘work in progress’,” says Martin, who also worked closely with researcher Mathilde Le Moullec, who over past years did the fieldwork to collect most of the bone samples from various locations on Svalbard. Climate Change May Be Too Fast It is far from certain that the Svalbard reindeer will be able to adapt as well to the rapid changes that result from global warming. The adaptations the reindeer have developed for the extreme arctic climate may fall short as the archipelago is now rapidly warming, which is changing both snow cover and vegetation. “Global warming is causing Svalbard’s climate to change faster than anywhere else in the world. Even though our results show that the Svalbard reindeer managed to adapt relatively quickly to a completely new environment after they colonized the islands, they might have trouble adapting to today’s rapid warming. They may have simply lost too much genetic variation,” says Hansen. This also applies to other terrestrial animals that have limited opportunities to move as climate change makes life difficult for them. “But this work now provides us with a better basis for understanding how quickly species can adapt to new environments,” says Martin. Reference: “Adaptation to the High-Arctic island environment despite long-term reduced genetic variation in Svalbard reindeer” by Nicolas Dussex, Ole K. Tørresen, Tom van der Valk, Mathilde Le Moullec, Vebjørn Veiberg, Ave Tooming-Klunderud, Morten Skage, Benedicte Garmann-Aarhus, Jonathan Wood, Jacob A. Rasmussen, Åshild Ø. Pedersen, Sarah L.F. Martin, Knut H. Røed, Kjetill S. Jakobsen, Love Dalén, Brage B. Hansen and Michael D. Martin, 1 September 2023, iScience. DOI: 10.1016/j.isci.2023.107811
DVDV1551RTWW78V
Thailand insole ODM service provider 》perfect for brands looking to scale with low-MOQ flexibilityTaiwan anti-bacterial pillow ODM design 》flexible, experienced, and ready to support your growthThailand OEM/ODM hybrid insole services 》your competitive edge in product performance and speed
限會員,要發表迴響,請先登入

