Contents ...
udn網路城邦
Customized sports insole ODM Taiwan 》driving your
2025/05/05 00:36
瀏覽16
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

China custom product OEM/ODM services

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Vietnam anti-bacterial pillow ODM design

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.ODM pillow for sleep brands China

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Smart pillow ODM manufacturer China

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Ergonomic insole ODM support China

Artist’s illustration of the Megalodon. However, new scientific research shows that no one knows what the Megalodon really looked like. Latest study reveals no one still knows what the Megalodon really looked like. DePaul University shark researchers say the mystery makes paleontology an exciting scientific field. A new scientific study shows that all previously proposed body forms of the gigantic Megalodon, or megatooth shark, which lived nearly worldwide roughly 15-3.6 million years ago, remain in the realm of speculations. “The study may appear to be a step backward in science, but the continued mystery makes paleontology, the study of prehistoric life, a fascinating and exciting scientific field,” said Kenshu Shimada, DePaul University paleobiology professor and a coauthor of the study. This latest research shedding light on the reality about the current understanding of the body shape of the Megalodon (formally called Otodus megalodon) appears in the international journal Historical Biology. The Challenge of Reconstructing Otodus megalodon Otodus megalodon is typically portrayed as a super-sized, monstrous shark in novels and films such as the 2018 sci-fi film “The Meg.” Previous studies suggest that the shark likely reached lengths of at least 50 feet (15 meters) and possibly as much as 65 feet (20 meters). “This new study shows that there are currently no scientific means to support or refute the accuracy of any of the previously published body forms of O. megalodon,” noted lead author Phillip Sternes, who graduated from DePaul in 2019 and is currently a Ph.D. candidate at the University of California, Riverside. Shimada mentored Sternes in his DePaul lab in Chicago, and the new study additionally includes Shimada’s current graduate student, Jake Wood, as coauthor. Paleobiologist Kenshu Shimada (DePaul University, Chicago) holds a tooth of an extinct shark Otodus megalodon, or the so-called “Meg” or megatooth shark. (DePaul University/Jeff Carrion). Credit: DePaul University/Jeff Carrion Otodus megalodon is known only from its teeth and vertebrae in the fossil record, and traditionally the modern great white shark (Carcharodon carcharias) was used as a model for the body form of O. megalodon. Carcharodon carcharias belongs to the shark family Lamnidae, or lamnids, also including the mako, porbeagle, and salmon sharks, and they are regionally endothermic (partially warm-blooded), allowing them to be active predators. Otodus megalodon is not a lamnid shark, but it was previously inferred to also have been regionally endothermic. Based on the inference, yet another previous study used two-dimensional geometric shape analyses on the body forms of modern lamnids to propose an inferred body form of O. megalodon. The new study by Sternes, Wood and Shimada examined whether such a two-dimensional approach can actually differentiate the body forms represented by modern endothermic (warm-blooded) species from those of modern ectothermic (cold-blooded) ones within the shark order called Lamniformes, which also includes Otodus megalodon. The study strongly indicates that, two-dimensionally, there is no relationship between thermophysiology and body form in lamniforms. “Although it is still possible that O. megalodon could have resembled the modern great white shark or lamnids, our results suggest that the two-dimensional approach does not necessarily decisively allow the body form reconstruction for O. megalodon,” Wood said. Ongoing Fascination with Megalodon in Paleontology “All previously proposed body forms of Otodus megalodon should be regarded as speculations from the scientific standpoint,” Sternes said. “Any meaningful discussion about the body form of O. megalodon would require the discovery of at least one complete, or nearly complete, skeleton of the species in the fossil record,” added Wood. “The fact that we still don’t know exactly how O. megalodon looked keeps our imagination going,” Shimada said. “This is exactly why the science of paleontology continues to be an exciting academic field. We’ll continue looking for more clues in the fossil record.” Reference: “Body forms of extant lamniform sharks (Elasmobranchii: Lamniformes), and comments on the morphology of the extinct megatooth shark, Otodus megalodon, and the evolution of lamniform thermophysiology” by Phillip C. Sternes, Jake J. Wood and Kenshu Shimada, 6 February 2022, Historical Biology. DOI: 10.1080/08912963.2021.2025228

Research from Duke University overturns previous beliefs about retrotransposons, showing that these DNA sequences actively use cellular mechanisms to form circular shapes and replicate. This finding, which has implications for understanding genetic evolution and diseases, challenges the long-held view that circular DNA is merely an accidental by-product. Credit: SciTechDaily.com Circular DNA, thought to be an accidental byproduct, is borrowing the cell’s DNA repair mechanisms to copy itself. Like its viral cousins, a somewhat parasitic DNA sequence called a retrotransposon has been found borrowing the cell’s own machinery to achieve its goals. In research published in the journal Nature, a Duke University team has determined that retrotransposons hijack a little-known piece of the cell’s DNA repair function to close themselves into a ring-like shape and then create a matching double strand. The finding upends 40 years of conventional wisdom saying these rings were just a useless by-product of bad gene copying. It may also offer new insights into cancer, viral infections, and immune responses. Retrotransposons are segments of DNA around 7,000 letters long that copy and paste themselves into different parts of the genomes of both plants and animals. By doing this, they play a role in rewriting DNA and regulating how the cell uses its genes. Retrotransposons are believed to be behind a lot of the variation and innovation in genes that drives evolution, and are inherited from both parents. Implications in Evolution and Disease Many studies have suggested that these rings of DNA outside the chromosomes are somehow involved in the development and progression of cancer in part because they are known to harbor cancer-driving oncogenes within their DNA sequences. The retrovirus HIV, which causes AIDS, is also known to form circular DNA. Ring-like circular DNA has been seen copying itself by borrowing some of the cell’s machinery, just as a virus does. Credit: Fu Yang, ZZ Lab at Duke University “I think these elements are the source of genome dynamics, for animal evolution and even to affect our daily lives,” said Zhao Zhang (ZZ), an assistant professor of pharmacology and cancer biology and a Duke Science & Technology scholar. “But we are still in the process of appreciating their function.” Unraveling the Mystery of Retrotransposons Retrotransposons are quite common – they make up about 40% of the human genome, and more than 75% of the maize genome – but how and where they copy themselves has always been a bit murky. Zhang holds up a thick textbook on retroviruses that he consulted for this study. The books say the ring-like sequences are “created by recombining the two ends of linear DNA, and are just a dead end, a by-product of failed replication,” he said. In earlier work with fruit fly eggs, Zhang’s team had established that inherited retrotransposons use the ‘nurse cells’ that support the egg as factories to manufacture many copies of themselves that are then distributed throughout the genome in the fly’s developing egg. This model system allowed the researchers to zoom in still further to learn more about retrotransposons. In the latest work, they found unexpectedly that most newly added retrotransposons were in this circular form rather than being integrated into the host’s genome. Then they ran a series of experiments knocking out the cell’s DNA repair mechanisms one at a time to figure out how and where the circles are being formed. The answer: A little-studied DNA repair mechanism called alternative end-joining DNA repair, or alt-EJ for short, which repairs doubles-stranded breaks. The retrotransposon sequences were using this part of the host’s repair machinery to sew the ends of their single-stranded DNA together and then using its DNA synthase to create a matching double-strand. For good measure, the researchers confirmed that this is also the process within human cells. Rethinking Circular DNA So retrotransposons aren’t a sloppy accident; they’re actually hijacking a little bit of the cell’s machinery to manufacture more of themselves, just like viruses do. “Our discovery actually overturns the textbook model,” Zhang said. “We showed that the recombination event proposed by the textbook is not important to forming rings,” Zhang said. “Instead, it’s the alt-EJ pathway driving circle production.” “My lab currently is trying to test whether circular DNA can be an intermediate to make new genome insertions,” Zhang said. “We’re also testing whether circular DNA can be sensed by our immune system to trigger an immune response.” “In the retroviral field and retrotransposon field, people think circular DNA is just a minor event, but our study is bringing circular DNA into the center stage,” Zhang said. “People should pay more attention to circular DNA.” Reference: “Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis” by Fu Yang, Weijia Su, Oliver W. Chung, Lauren Tracy, Lu Wang, Dale A. Ramsden and ZZ Zhao Zhang, 12 July 2023, Nature. DOI: 10.1038/s41586-023-06327-7 Funding for this study came from the National Cancer Institute (P01CA247773), National Institutes of Health (DP5 OD021355, R01 GM141018) and the Pew Biomedical Scholars Program.

In a study published in Communications Biology, neuroscientists at the University of Pittsburgh have developed a machine learning model to understand how brains, including those of marmoset monkeys and guinea pigs, recognize and categorize sounds such as mating, food, or danger calls. The researchers drew parallels between sound recognition and facial recognition, where instead of matching a perfect template, the brain recognizes specific features. The insights from the study are expected to enhance the understanding and treatment of speech recognition disorders and improvement of hearing aids. Neuroscientists at the University of Pittsburgh have created a machine learning model to understand how brains recognize communication sounds. The model, tested on guinea pigs, accurately predicted brain activity in response to different sound categories. The research also revealed that guinea pigs could recognize altered sounds, mirroring human ability to understand different accents. This work could help improve understanding and treatment of speech recognition disorders and enhance hearing aids. In a paper published today (May 2) in Communications Biology, auditory neuroscientists at the University of Pittsburgh describe a machine learning model that helps explain how the brain recognizes the meaning of communication sounds, such as animal calls or spoken words. The algorithm described in the study models how social animals, including marmoset monkeys and guinea pigs, use sound-processing networks in their brain to distinguish between sound categories – such as calls for mating, food or danger — and act on them. The study is an important step toward understanding the intricacies and complexities of neuronal processing that underlies sound recognition. The insights from this work pave the way for understanding, and eventually treating, disorders that affect speech recognition, and improving hearing aids. “More or less everyone we know will lose some of their hearing at some point in their lives, either as a result of aging or exposure to noise. Understanding the biology of sound recognition and finding ways to improve it is important,” said senior author and Pitt assistant professor of neurobiology Srivatsun Sadagopan, Ph.D. “But the process of vocal communication is fascinating in and of itself. The ways our brains interact with one another and can take ideas and convey them through sound is nothing short of magical.” Noisy sound inputs pass through networks of excitatory and inhibitory neurons in the auditory cortex that clean up the signal (in part guided by the listener paying attention) and detect characteristic features of sounds, allowing the brain to recognize communication sounds regardless of variations in how they are uttered by the speaker and surrounding noise. Credit: Manaswini Kar Humans and animals encounter an astounding diversity of sounds every day, from the cacophony of the jungle to the hum inside a busy restaurant. No matter the sound pollution in the world that surrounds us, humans and other animals are able to communicate and understand one another, including pitch of their voice or accent. When we hear the word “hello,” for example, we recognize its meaning regardless of whether it was said with an American or British accent, whether the speaker is a woman or a man, or if we’re in a quiet room or busy intersection. Comparing Sound Recognition to Face Recognition The team started with the intuition that the way the human brain recognizes and captures the meaning of communication sounds may be similar to how it recognizes faces compared with other objects. Faces are highly diverse but have some common characteristics. Instead of matching every face that we encounter to some perfect “template” face, our brain picks up on useful features, such as the eyes, nose, and mouth, and their relative positions, and creates a mental map of these small characteristics that define a face. In a series of studies, the team showed that communication sounds may also be made up of such small characteristics. The researchers first built a machine learning model of sound processing to recognize the different sounds made by social animals. To test if brain responses corresponded with the model, they recorded brain activity from guinea pigs listening to their kin’s communication sounds. Neurons in regions of the brain that are responsible for processing sounds lit up with a flurry of electrical activity when they heard a noise that had features present in specific types of these sounds, similar to the machine learning model. They then wanted to check the performance of the model against the real-life behavior of the animals. Guinea pigs were put in an enclosure and exposed to different categories of sounds — squeaks and grunts that are categorized as distinct sound signals. Researchers then trained the guinea pigs to walk over to different corners of the enclosure and receive fruit rewards depending on which category of sound was played. Then, they made the tasks harder: To mimic the way humans recognize the meaning of words spoken by people with different accents, the researchers ran guinea pig calls through sound-altering software, speeding them up or slowing them down, raising or lowering their pitch, or adding noise and echoes. Not only were the animals able to perform the task as consistently as if the calls they heard were unaltered, they continued to perform well despite artificial echoes or noise. Better yet, the machine learning model described their behavior (and the underlying activation of sound-processing neurons in the brain) perfectly. Implications for Human Speech Recognition and Disorders As a next step, the researchers are translating the model’s accuracy from animals into human speech. “From an engineering viewpoint, there are much better speech recognition models out there. What’s unique about our model is that we have a close correspondence with behavior and brain activity, giving us more insight into the biology. In the future, these insights can be used to help people with neurodevelopmental conditions or to help engineer better hearing aids,” said lead author Satyabrata Parida, Ph.D., postdoctoral fellow at Pitt’s department of neurobiology. “A lot of people struggle with conditions that make it hard for them to recognize speech,” said Manaswini Kar, a student in the Sadagopan lab. “Understanding how a neurotypical brain recognizes words and makes sense of the auditory world around it will make it possible to understand and help those who struggle.” Reference: “Adaptive mechanisms facilitate robust performance in noise and in reverberation in an auditory categorization model” by Satyabrata Parida, Shi Tong Liu and Srivatsun Sadagopan, 2 May 2023, Communications Biology. DOI: 10.1038/s42003-023-04816-z An additional author of the study is Shi Tong Liu, Ph.D., of Pitt. Funding: NIH/National Institutes of Health

DVDV1551RTWW78V



China custom insole OEM supplier 》perfect for brands looking to scale with low-MOQ flexibilityGraphene insole manufacturer in Thailand 》customized solutions that grow with your businessGraphene sheet OEM supplier China 》helping your brand lead with innovation and integrity

限會員,要發表迴響,請先登入