Contents ...
udn網路城邦
Orthopedic pillow OEM solutions Taiwan 》delivering
2025/05/06 00:19
瀏覽20
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Custom foam pillow OEM in Taiwan

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Vietnam orthopedic insole OEM manufacturer

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.China ergonomic pillow OEM supplier

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Taiwan custom insole OEM factory

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Thailand graphene sports insole ODM

A new research study suggests that quieting communication between heart cells and their environment protects this organ from harmful signals related to stresses such as high blood pressure, but at the cost of preventing heart cells from receiving signals that promote regeneration. Research indicates that decreased nuclear pores in mature heart cells protect against harmful signals but inhibit regeneration. The gene Lamin b2 plays a key role in this process, impacting heart response to stress. As heart cells mature in mice, the number of communication pathways called nuclear pores dramatically decreases. Although this might protect the organ from damaging signals, it could also prevent adult heart cells from regenerating. This is according to new research conducted by scientists from the University of Pittsburgh and the University of Pittsburgh School of Medicine (UPMC). The study suggests that quieting communication between heart cells and their environment protects this organ from harmful signals related to stresses such as high blood pressure, but at the cost of preventing heart cells from receiving signals that promote regeneration. The study was published today (October 24) in the journal Developmental Cell. Understanding Heart Cell Regeneration “This paper provides an explanation for why adult hearts do not regenerate themselves, but newborn mice and human hearts do,” said senior author Bernhard Kühn, M.D. “These findings are an important advance in fundamental understanding of how the heart develops with age and how it has evolved to cope with stress.” Kühn is professor of pediatrics and director of the Pediatric Institute for Heart Regeneration and Therapeutics at Pitt School of Medicine and UPMC Children’s Hospital of Pittsburgh Electron microscopy images of fetal (left) and infant (right) rodent heart cell nuclei. As heart cells develop, the number of nuclear pores decreases. Credit: Han et al., 2022, Developmental Cell, 10.1016/j.devcel.2022.09.017 While skin and many other tissues of the human body retain the ability to repair themselves after injury, the same isn’t true of the heart. During human embryonic and fetal development, heart cells undergo cell division to form the heart muscle. But as heart cells mature in adulthood, they enter a terminal state in which they can no longer divide. To understand more about how and why heart cells change with age, Kühn teamed up with fellow Pitt researchers and biomedical imaging experts Yang Liu, Ph.D., associate professor of medicine and bioengineering, and Donna Stolz, Ph.D., associate professor of cell biology and pathology and associate director of the Center for Biologic Imaging, to look at nuclear pores. These perforations in the lipid membrane that surround a cell’s DNA regulate the passage of molecules to and from the nucleus. Role of Nuclear Pores in Cardiac Function “The nuclear envelope is an impermeable layer that protects the nucleus like asphalt on a highway,” said Kühn, who is also a member of the McGowan Institute for Regenerative Medicine. “Like manholes in this asphalt, nuclear pores are pathways that allow information to get through the barrier and into the nucleus.” Using super-resolution microscopy, Liu visualized and counted the number of nuclear pores in mouse heart cells, or cardiomyocytes. The number of pores decreased by 63% across development, from an average of 1,856 in fetal cells to 1,040 in infant cells to just 678 in adult cells. These findings were validated by Stolz who used electron microscopy to show that nuclear pore density decreased across heart cell development. Impact of Lamin b2 on Nuclear Pore Numbers In previous research, Kühn and his team showed that a gene called Lamin b2, which is highly expressed in newborn mice but declines with age, is important for cardiomyocyte regeneration. In the new study, they show that blocking expression of Lamin b2 in mice led to a decrease in nuclear pore numbers. Mice with fewer nuclear pores had diminished transport of signaling proteins to the nucleus and decreased gene expression, suggesting that reduced communication with age may drive a decrease in cardiomyocyte regenerative capacity. “These findings demonstrate that the number of nuclear pores controls information flux into the nucleus,” explained Kühn. “As heart cells mature and the nuclear pores decrease, less information is getting to the nucleus.” Nuclear Pores and Heart Function In response to stress such as high blood pressure, a cardiomyocyte’s nucleus receives signals that modify gene pathways, leading to structural remodeling of the heart. This remodeling is a major cause of heart failure. The researchers used a mouse model of high blood pressure to understand how nuclear pores contribute to this remodeling process. Mice that were engineered to express fewer nuclear pores showed less modulation of gene pathways involved in harmful cardiac remodeling. These mice also had better heart function and survival than their peers with more nuclear pores. “We were surprised at the magnitude of the protective effect of having fewer nuclear pores in mice with high blood pressure,” said Kühn. “However, having fewer communication pathways also limits beneficial signals such as those that promote regeneration.” Reference: “Changes in nuclear pore numbers control nuclear import and stress response of mouse hearts” by Lu Han, Jocelyn D. Mich-Basso, Yao Li, Niyatie Ammanamanchi, Jianquan Xu, Anita P. Bargaje, Honghai Liu, Liwen Wu, Jong-Hyeon Jeong, Jonathan Franks, Donna B. Stolz, Yijen L. Wu, Dhivyaa Rajasundaram, Yang Liu and Bernhard Kühn, 24 October 2022, Developmental Cell. DOI: 10.1016/j.devcel.2022.09.017 Other authors who contributed to this study were Lu Han, Ph.D., Jocelyn D. Mich-Basso, B.S., M.T., Yao Li, Ph.D., Niyatie Ammanamanchi, M.S., Jianquan Xu, Ph.D., Anita P. Bargaje, B.S., Honghai Liu, Ph.D., Liwen Wu, Ph.D., Jong-Hyeon Jeong, Ph.D., Jonathan Franks, M.S., Yijen L. Wu, Ph.D., and Dhivyaa Rajasundaram, Ph.D., all of Pitt or UPMC. This research was supported by the Richard King Mellon Foundation Institute for Pediatric Research (UPMC Children’s Hospital of Pittsburgh), HeartFest, the National Institutes of Health (R01HL151415, R01 HL151386, R01HL155597, T32HL129949, EB023507 and NS121706-01), the American Heart Association (18CDA34140024), and the U.S. Department of Defense (W81XWH1810070 and W81XWH-22-1-0221), the Clinical and Translational Science Institute at Pitt, and the Aging Institute at Pitt and UPMC.

A team of biologists at CUNY Graduate Center has mapped the genetic makeup of 47 strains of Lyme disease bacteria, potentially improving diagnosis and treatment. The study reveals how these bacteria evolve and adapt, offering insights for developing effective vaccines and new therapies. Researchers at CUNY Graduate Center have conducted an extensive genetic analysis of Lyme disease bacteria, mapping the complete genetic makeup of 47 strains from around the globe. This groundbreaking work could lead to more accurate diagnostic tests and personalized treatments for Lyme disease, the most common tick-borne illness in North America and Europe. The study also sheds light on the bacteria’s evolution, dating back millions of years, and identifies key areas where genetic material exchange occurs, potentially enabling the bacteria to adapt to new environments. Genetic Breakthrough in Lyme Disease Research A team led by CUNY Graduate Center biologists has produced a genetic analysis of Lyme disease bacteria that may pave the way for improved diagnosis, treatment, and prevention of the tick-borne ailment. Weigang Qiu, a professor of Biology at the CUNY Graduate Center and Hunter College, and an international team including lead author Saymon Akther, a former CUNY Graduate Center Biology Ph.D. student, mapped the complete genetic makeup of 47 strains of Lyme disease-related bacteria from around the world, creating a powerful tool for identifying the bacterial strains that infect patients. Researchers said this could enable more accurate diagnostic tests and treatments tailored to the bacteria causing each patient’s illness. Potential for Improved Diagnostic Tests and Treatments “By understanding how these bacteria evolve and exchange genetic material, we’re better equipped to monitor their spread and respond to their ability to cause disease in humans,” said Qiu, the corresponding author of the study. The study was published in mBio journal. Researchers said the genetic information uncovered in the study may help scientists develop more effective vaccines against Lyme disease. Lyme Disease: A Growing Public Health Threat Lyme disease is the most common tick-borne illness in North America and Europe, affecting hundreds of thousands of people a year. The disease arises from bacteria belonging to the Borrelia burgdorferi sensu lato group, which infect people through the bite of infected ticks. Symptoms can include fever, headache, fatigue, and a characteristic skin rash. If left untreated, the infection can spread to joints, the heart, and the nervous system, causing more severe complications. Case numbers are increasing steadily, with 476,000 new cases each year in the United States, and may grow faster with climate change, the authors of the study said. Expanding Genomic Research on Lyme Disease Bacteria The research team, led by scientists from the CUNY Graduate Center and Hunter College, Rutgers, Stony Brook, and more than a dozen other research institutions, sequenced the complete genomes of Lyme disease bacteria representing all 23 known species in the group. Most hadn’t been sequenced before the effort. The National Institutes of Health-funded project included many bacteria strains most associated with human infections and species not known to cause disease in humans. By comparing these genomes, the researchers reconstructed the evolutionary history of Lyme disease bacteria, tracing the origins back millions of years. They discovered the bacteria likely originated before the breakup of the ancient supercontinent Pangea, explaining the current worldwide distribution. Recombination: The Key to Bacterial Adaptation The study also disclosed how these bacteria exchange genetic material in and between species. This process, known as recombination, allows the bacteria to rapidly evolve and adapt to new environments. The researchers identified specific hot spots in the bacterial genomes where this genetic exchange occurs most frequently, often involving genes that help the bacteria interact with their tick vectors and animal hosts. To facilitate ongoing research, the team has developed web-based software tools (BorreliaBase.org) that allow scientists to compare Borrelia genomes and identify determinants of human pathogenicity. Future Research Directions and Public Health Implications Looking ahead, the scientists said they plan to expand their analysis to include more strains of Lyme disease bacteria, especially from understudied regions. They also aim to investigate the functions of genes unique to disease-causing strains, which could uncover new targets for therapeutic interventions. As Lyme disease expands its geographic range because of climate change, the research provides valuable tools and insights for combating this rising public health threat. Reference: “Natural selection and recombination at host-interacting lipoprotein loci drive genome diversification of Lyme disease and related bacteria” by Saymon Akther, Emmanuel F. Mongodin, Richard D. Morgan, Lia Di, Xiaohua Yang, Maryna Golovchenko, Natalie Rudenko, Gabriele Margos, Sabrina Hepner, Volker Fingerle, Hiroki Kawabata, Ana Cláudia Norte, Isabel Lopes de Carvalho, Maria Sofia Núncio, Adriana Marques, Steven E. Schutzer, Claire M. Fraser, Benjamin J. Luft, Sherwood R. Casjens and Weigang Qiu, 15 August 2024, mBio. DOI: 10.1128/mbio.01749-24 The study is supported by grants from NIH and an award from the Steven and Alexandra Cohen Foundation.

Researchers have developed a new form of omega-3 fatty acid docosahexaenoic acid (DHA) that can cross into the eye’s retina, potentially helping to prevent visual decline linked to Alzheimer’s disease, diabetes, and other disorders. The newly created lysophospholipid form of DHA (LPC-DHA) was found to be more effective than the typical triacylglycerol (TAG) DHA in fish oil capsules, which cannot reach the eyes. In a study using mice, LPC-DHA increased DHA in the retina and reduced eye problems related to Alzheimer’s-like processes, suggesting a potential novel therapeutic approach for retinal dysfunction associated with Alzheimer’s disease and diabetes. By crossing into the retina, a new DHA supplement achieves what previous ones could not. For the first time, researchers have developed a form of the omega-3 fatty acid docosahexaenoic acid (DHA) that is capable of crossing into the eye’s retina to ward off visual declines related to Alzheimer’s disease, diabetes ,and other disorders. The DHA found in fish oil capsules and other supplements is typically in a form called triacylglycerol (TAG) DHA. Although TAG-DHA has benefits in other parts of the body, it does not reach the eyes because it cannot travel from the bloodstream into the retina. For the study, researchers created a new lysophospholipid form of DHA, or LPC-DHA. In studies using mice, LPC-DHA successfully increased DHA in the retina and reduced eye problems associated with Alzheimer’s-like processes. “Dietary LPC-DHA is enormously superior to TAG-DHA in enriching retinal DHA and could be potentially beneficial for various retinopathies in patients,” said Sugasini Dhavamani, a research assistant professor in the Department of Medicine at the University of Illinois at Chicago. “This approach provides a novel therapeutic approach for the prevention or mitigation of retinal dysfunction associated with Alzheimer’s disease and diabetes.” Sugasini Dhavamani, PhD, research assistant professor in the Department of Medicine at the University of Illinois at Chicago. Credit: Sugasini Dhavamani, University of Illinois at Chicago Dhavamani will present the research at Discover BMB, the annual meeting of the American Society for Biochemistry and Molecular Biology, March 25–28 in Seattle. In healthy eyes, DHA is concentrated in the retina, where it helps maintain photoreceptors, the cells that convert light into signals that are sent to the brain. DHA deficiency in the retina is associated with vision loss. People with Alzheimer’s disease, as well as those with diabetes, retinitis pigmentosa, age-related macular degeneration and peroxisomal disorders, frequently have abnormally low levels of retinal DHA, and visual impairments are common as a result. Challenges of Delivering DHA to the Retina While boosting DHA can help to prevent such declines, increasing retinal DHA content has been challenging with currently available supplements. For a dietary supplement to deliver DHA to the retina, the DHA must be able to first be absorbed from the intestine into the bloodstream and then cross from the bloodstream into the retina. “Increasing the retinal DHA at clinically feasible doses has not been possible until now because of the specificity of the blood-retinal barrier that is incompatible with the specificity of the intestinal barrier,” said Dhavamani. “This study uses the novel approach of dietary LPC-DHA that overcomes both intestinal and blood-retinal barriers and improves retinal function.” LPC-DHA Outperforms TAG-DHA The researchers tested their LPC-DHA supplement in mice bred to exhibit processes similar to those found in early-onset Alzheimer’s disease. After six months, mice that were fed LPC-DHA daily showed a 96% improvement in retinal DHA content as well as preserved retinal structure and function. In contrast, TAG-DHA supplements had no effect on retinal DHA levels or function. The results suggest that LPC-DHA supplements could help to prevent Alzheimer’s-related declines in visual function. Researchers say the approach should also be helpful for other disorders in which DHA deficiency and vision impairment are common. The dosage of LPC-DHA used in the study is equivalent to about 250 to 500 milligrams of omega-3 fatty acids per day in humans. Since these studies were conducted in mice, further studies would be needed to confirm that LPC-DHA is safe and effective for use in humans. Sugasini Dhavamani will present this research during the Spotlight Session on Chemical biology of natural products, nucleic acids and small molecules from 3:15–4:15 p.m. PDT on Monday, March 27, in Rooms 602–604 of the Seattle Convention Center. Contact the media team for more information or to obtain a free press pass to attend the meeting. This work was supported by an Alzheimer’s Association Research Grant (AARG).

DVDV1551RTWW78V



Taiwan OEM/ODM hybrid insole development factory 》craftsmanship meets efficiency for maximum valueHigh-performance graphene insole OEM Taiwan 》reducing complexity, increasing product valueThailand neck support pillow OEM 》performance-first thinking from development to delivery

限會員,要發表迴響,請先登入