Contents ...
udn網路城邦
熱力學輔助函數
2017/11/06 15:04
瀏覽4,516
迴響0
推薦0
引用0

Chapter 5 Auxiliary Function

dU=TdS- PdV, U=U(S,V); dS=dU/T+(P/T)dV, S=S(U,V) 操作變數不方便,改成方便操作的壓力、體積、溫度的變數,需用何種函數?

通常量測上用壓力和溫度,理論推導用溫度與體積

Energy function def: AU-TS, HU+PV, GH-TS 目的:2nd law轉變形式來看

微分式

dH=dU+PdV+VdP=TdS-PdV+PdV+VdP=TdS+VdP, H(S,P)

dA=dU-TdS-SdT=TdS-PdV-TdS-SdT=-SdT-PdV, A(T,V)

dG=dH-TdS-SdT=TdS+VdP-TdS-SdT=-SdT+VdP, G(T,P)

利用4個能量函數的微分式座運算處理:

dU=TdS- PdV, dH=TdS+VdP, dA=-SdT-PdV, dG=-SdT+VdP

H, Enthalpy HU+PV

等壓過程, dHₚ=TdS+VdP=TdSₚ=δQₚ

state 1 state 2 H=H-H₁=(U-U₁)+(PV₂-PV),

at constant P, ∆H=U+PV=Q-W+PV →∆H=Q, H=進入或離開的熱()

A, Helmholtz free energy AU-TS

state 1 state 2 A=A-A₁=(U-U₁)-(TS₂-TS),

at const T, A=(U-U₁)-T(S₂-S)=U-TS=Q-W-TS 因此, A+W=∆Q-TS

Q≤∆Qᵣₑᵥ=TS Q-TS0∆A+W≤0 ∆A≤-∆W

i.e. ∆A+TSₚᵣₒ=-∆W → dA+TdSᵢᵣᵣₑᵥ=-δW

if constant V, δW=PdV=0 ⸫ dAᴛ,ᴠ+TdSᵢᵣᵣₑᵥ=0 under constant T and V,

dAᴛ,ᴠ= -TdSᵢᵣᵣₑᵥ≤0 (⸪2nd law: dSᵢᵣᵣₑᵥ≥0) A↓, Aᴛ,ᴠ= Aₘᵢₙ in equil.

Ex. 在固定溫度和體積的固體昇華成氣體,看能量與氣體粒子的關係

If P<Pզ → nᵥ< nᵥ,ₑզ

S熱儲=-Q/T...(1), Sgas=+(Q/T)+Sₚᵣₒ...(2), (1)+(2) Stotal=Sₚᵣₒ=Sᵢᵣᵣₑᵥ

for gas at constant T and V, ∆Aᴛ,ᴠ+TSₚᵣₒ=0 → ∆Aᴛ,ᴠ=-TSₚᵣₒ∆Aᴛ,ᴠ≤0

G, Gibbs free energy G≡H-TS

state 1 state 2 ∆G=G-G₁=(H-H₁)-(TS₂-TS)=(U-U₁)+(PV₂-PV)-(TS₂-TS),

at const T and P, ∆Gᴛ,ᴩ=(U-U₁)+P(V₂-V)-T(S₂-S)=U+PV-TS=Q-W+PV-TS i.e.W=PV+W ∆Gᴛ,ᴩ=Q-W-TS

Q≤∆Qᵣₑᵥ=TS Q-TS0∆Gᴛ,ᴩ+W≤0 ∆Gᴛ,ᴩ≤-∆W

i.e. ∆Gᴛ,ᴩ+TSₚᵣₒ=-∆W if no other work, W=0 ⸫ ∆Gᴛ,ᴩ+TSₚᵣₒ=0,

Gᴛ,ᴩ= -TSᵢᵣᵣₑᵥ≤0 (⸪2nd law: Sᵢᵣᵣₑᵥ≥0) G↓,

if ∆Gᴛ,ᴩ<0, span="">state 1 state 2自然發生, 而且Gᴛ,ᴩ= Gₘᵢₙ at equilibrium point.

Summary: 如何判斷變化是否發生和平衡的條件

2nd law: dSᴜ,ᴠ≥0, 達平衡時Sᴜ,ᴠ=Sₘₐₓ 而且dSᴜ,ᴠ=0

dUS,ᴠ0, US,ᴠ=Uₘᵢₙ; dHS,ᴩ0, HS,ᴩ=Hₘᵢₙ; dAᴛ,ᴠ0, Aᴛ,ᴠ=Aₘᵢₙ; dGᴛ,ᴘ0, Gᴛ,ᴘ=Gₘᵢₙ

將第二定律entropy增加的條件轉換成能量下降的條件,方便操作!

能量函數定義: A≡U-TS, H≡U+PV, G≡H-TS 須記熟

微分式

dU=TdS- PdV, U(S,V)

dH=TdS+VdP, H(S,P)

dA=-SdT-PdV, A(T,V)

dG=-SdT+VdP, G(T,P)



Section 6&7 chemical work(potential)成分變化 G=G(T,P,ni,nj,…)

dG=(G∕∂T),n,...dT+(G∕∂P),n,...dP+(G∕∂nᵢ),,nj,...dnᵢ+.. 若組成物莫耳數保持一定 dG=(G∕∂T)dT+(G∕∂P)dP

def: (G∕∂nᵢ),,nj,...=μ化學勢 dG=-SdT+VdP+Σμᵢnᵢ ,

i.e. (G∕∂nᵢ),,nj,...=(A∕∂nᵢ),,nj,...=(H∕∂nᵢ),,nj,...=(U∕∂nᵢ),,nj,...



熱力學的數學推導(係數關係)

dU=TdS- PdV=(U∕∂S)dS+(U∕∂V)dV, T=(U∕∂S)ᵥ=(H∕∂S)

dH=TdS+VdP=(H∕∂S)dS+(H∕∂P)dP, S=-(A∕∂T)ᵥ=-(G∕∂T)

dA=-SdT-PdV=(A∕∂T)dT+(A∕∂V)dV, P=-(U∕∂V)ₛ=-(A∕∂V)

dG=-SdT+VdP=(G∕∂T)dT+(G∕∂P)dP, V=(H∕∂P)ₛ=(G∕∂P)



Maxwell relation :

if Z=Z(x,y), dZ=(Z∕∂x)ydx+(Z∕∂y)xdy=Ldx+Mdy and (L∕∂y)x=(M∕∂x)y

(T∕∂V)=-(P∕∂S), (T∕∂P)=(V∕∂S), (S∕∂V)=(P∕∂T), -(S∕∂P)=(G∕∂T)

Derived equations

Ex-1. ideal gas: U=U(T), (U∕∂V)=0, (U∕∂P)=0

pf: dU=TdS- PdV

(U∕∂V)=T(S∕∂V)-P=T(P∕∂T)ᵥ-P=T(R/V)-P=0,

(U∕∂P)=T(S∕∂P)-P(∂V∕∂P)=-T(V∕∂T)ₚ-P(-RT/P²)=-T(R/P)+RT/P=0

or (U∕∂S)=T-P(V∕∂S)=T-P(T∕∂P)ᵥ=T-P (R/V)=0 所以UT的函數, 與壓力,體積, S均無關

Ex-2. ideal gas: H=H(T), (H∕∂V)=0, (H∕∂P)=0

pf: dH=TdS+VdP

(H∕∂V)=T(S∕∂V)+[∂(VdP)/V]=T(P∕∂T)ᵥ-P=T(R/V)-P=0

PV=RT → PdV+VdP=0 ⸫-P=(VdP)/dV

(∂H∕∂P)=T(S∕∂P)+V=-T(V∕∂T)ₚ+V=-T(R/P)+V=0

or (U∕∂S)=T+V(P∕∂S)=T-V(T∕∂P)ᵥ=T-P (R/V)=0 所以HT的函數

ratio relation z=z(x, y), (x∕∂y)z(y∕∂z)x(z∕∂x)y=-1

pf: dz=(z∕∂x)ydx+(z∕∂y)xdy dz/[(z∕∂x)y]=dx+(z∕∂y)xdy/[(z∕∂x)y]=dx+(z∕∂y)x(x∕∂z)ydy ...(a)

x=x(y, z), dx=(x∕∂y)zdy+(x∕∂z)ydz ...(b), 比較(a),(b) (x∕∂y)z=-(z∕∂y)x(x∕∂z)y

利用倒數關係, (x∕∂y)z(y∕∂z)x(z∕∂x)y=-1

Ex.-3 TdS equations

dSδQᵣₑᵥ/T δQ=TdS Q=²δQ=∫²TdS

δQ=TdS=(?)dT+(?)dV 1st TdS equation→ TdS=f(T,V)

δQ=TdS=(?)dT+(?)dP 2nd TdS equation→ TdS=f(T,P)

δQ=TdS=(?)dP+(?)dV 3rd TdS equation→ TdS=f(P,V)

1st TdS equation S=S(T,V) dS=(S∕∂T)dT+(S∕∂V)dV

TdSQ=cdT i.e. cᵥ=(δQᵣₑᵥ/dT)ᵥ →cᵥ=T∙(∂S/∂T)ᵥ=(∂U/∂T)ᵥdUQ, c= δQᵥ/dT=(∂U/∂T)ᵥ

dS=(cᵥ∕T)dT+(P∕∂T)dV dS=(cᵥ∕T)dT+(αβ)dV

P=P(T,V) its ratio relation, (P∕∂T)(T∕∂V)(V∕∂P)=-1

(P∕∂T)ᵥ=-(V∕∂T)ₚ/(V∕∂P)=-αV/-βV=α/β

i.e. expansion coeff. α=(1/V)(V∕∂T), compressibility β=(-1/V)(V∕∂P)

1st TdS equationTdS=f(T,V)=cdT+(αTβ)dV

state 1(T₁,V₁) → state 2(T₂,V₂) ∆Q=∫²δQ=∫²TdS=ᵀ²cdT+ᴠ₁²(αTβ)dV

2nd TdS equation S=S(T,P) dS=(S∕∂T)dT+(S∕∂P)dP

δQₚ=TdSₚ=cdT , ⸪c=(δQ/dT)ₚ ⸫(S∕∂T)ₚ=cₚ/T and (S∕∂P)=-(V∕∂T)ₚ=-αV

dS=(S∕∂T)dT+(S∕∂P)dP=(cₚ/T)dT-αVdPTdS=cdT-αVTdP

Ex-4 Gibbs-Helmholtz equation: 定壓[d(G/T)/dT]=-H/T², 已知G(T) 如何計算H(T)

G≡H-TS[(G/T)/T]=[(H/T)/T]ₚ-(S∕∂T)=[T(H/T)ₚ-H]/T²-cₚ/T=cₚ/T-H/T²-cₚ/T=-H/T²

i.e. df(y/x)=(xdy-ydx)/x²

同理[(G/T)/T]ₚ-[(G/T)/T]=-H/T²-(-H/T²) [(G/T)/T]=-H/T²

experimental data: G vs. T plot transform to G/T vs. 1/T plot

[(G/T)/T]=-H/T² [(G/T)/∂(1/T)]=H

Ex-5 Helmholtz-internal energy equation: 定容[(A/T)/T]=-U/T² 已知A(T) 如何計算U(T)

A≡U-TS, 同理[(A/T)/T]=[(U/T)/T]-(S∕∂T)=[T(U/T)-U]/T²-c/T=c/T-U/T²-c/T=-U/T²

Ex.-6 cδQ/dT , c=(δQ/dT)ₚ, cᵥ=(δQ/dT)ᵥ

eq. 2-8, cₚ-c=(U∕∂V)(V∕∂T)ₚ+P(V∕∂T)ₚ=(V∕∂T)ₚ[P+(U∕∂V)]轉換成可量的物理量

dA=-SdT-PdV ⸫(∂A/∂V)=-P, and A≡U-TS (∂A/∂V)=(∂U/∂V)-T(∂S/∂V)=(∂U/∂V)-T(P/T)

-P=(∂U/∂V)-T(P/T)代入eq. 2-8, cₚ-c=T(V∕∂T)(P/T)

(P∕∂T)(T∕∂V)(V∕∂P)=-1 → (∂P∕∂T)ᵥ=-(∂V∕∂T)ₚ/(∂V∕∂P)=-αV/-βV=α/β

cₚ-c=T(V∕∂T)(P/T)=-T(V∕∂T)²ₚ/(∂V∕∂P)=α²VT/β

i.e. expansion coeff. α=(1/V)(∂V∕∂T)ₚ, compressibility β=-(1/V)(∂V∕∂P)

Ex. Al=26.98 g/mole, c=? (cₚ=24.36 J/Kmole, T=298K, α=7.3510⁻⁵ /K, β=1.210⁻⁶ /atm, ρ=2.7 g/cm³)

V=26.98/2.7≈10 cm³/mole=10⁻² l/mole, c=c-(α²VT/β)=23.13 J/Kmole

Ex. adiabatic thermoelastic effect: 利用施加突然的壓力轉成熱使溫度升高,做非破壞的缺陷檢測

AlO 施加sudden P=500 MPa, T=? (Given: cₚ=80 J/Kmole, T=298K, α=2.210⁻⁵ /K, V=25.6 cm³/mole)

sudden loading P and no heat dissipationadiabatic and heat make T increase

(∂T/∂P)=? (T∕∂P)(P∕∂S)(S∕∂T)ₚ=-1 and c=T∙(∂S/∂T), c=TS/dT)ₚ=(δH/dT)ₚ

(S∕∂P)=-(V∕∂T)ₚ=-αV → (∂T/∂P)=-(S∕∂P)/(S∕∂T)ₚ= αV/(c/T)=αVT/c

→ ∫ᴛ₁²dT/T=ᴩ₁ᴾ₂(αV/cₚ)dP=αV/cₚ(P-P), T₂=299K, T=1K

補充: Dehoff ch-4, pp.51-71 general strategy for deriving thermodynamic equations

e.g. 5-11 (∂T/∂P)=? 2nd TdS equation TdS=cdT-αVTdP ⸪dS=0 ⸫(∂T/∂P)=αVT/c

概念1: 溫度和壓力是實作上最容易操作的變數,自變數以T, P表示,其他變數(V, S, U, H, A, G)都轉換成以自變數T, P表示的函數Z=Z(T, P) → dZ=(?)dT+(?)dP

V=V(T,P) → dV=(V∕∂T)dT+(V∕∂P)dP=αVdT- βVdP

S=S(T,P) → dS=(S∕∂T)dT+(S∕∂P)dP=(cₚ/T)dT-αVdP i.e. (S∕∂P)=-(V∕∂T)ₚ=-αV

dU=TdS- PdV=T[(cₚ/T)dT-αVdP]-P[αVdT- βVdP]=(cₚ-αPV)dT+V(βP-αT)dP

dH=TdS+VdP=T[(cₚ/T)dT-αVdP]+VdP=cdT+V(1-αT)dP

dA=-SdT-PdV=-SdT-P(αVdT- βVdP)=-(S+αPV)dT+βPVdP

dG=-SdT+VdP

基礎公式:

dV=αVdT- βVdP, dS=(cₚ/T)dT-αVdP, dU=(cₚ-αPV)dT+V(βP-αT)dP,

dH=cdT+V(1-αT)dP, dA=-(S+αPV)dT+βPVdP, dG=-SdT+VdP

概念2:Z=Z(x,y), dZ=Mdx+Ndy dx=XdT+XdP, dy=YdT+YdP代入dZ

dZ=M(XdT+XdP)+N(YdT+YdP)=(MX+NY)dT+(MXₚ+NY)dP

再比較dZ=ZdT+ZdPM, N

習題練習:

5-1, 5-2, 5-9 S=S(P,V) dS=MdP+NdV=MdP+N(αVdT-βVdP)= NαVdT+(M-NβV)dP

dS=(cₚ/T)dT-αVdP 比較, NαV=c/T, M-NβV=-αV M=βc/αT- αV, N=c/αVT,

(S∕∂P)=M=βcₚ/αT- αV=βc/αT, (S∕∂V)=N=cₚ/αVT, i.e. cₚ-cᵥ=α²VT/β

(P∕∂V)ₛ=-N/M=-(cₚ/αVT)/(βc/αT)=-cₚ/βcV

3rd TdS equation: S=S(P,V) TdS=(cₚ/αV)dV+(βc/α)dP

5-3, 5-4 A=A(P,V) dA=MdP+NdV=MdP+N(αVdT-βVdP)= NαVdT+(M-NβV)dP

dA=-(S+αPV)dT+βPVdP 比較, NαV=-(S+PVα), M-NβV=PVβ

M=-βS/α, N=-(S+PVα)/αV, (A∕∂P)=M=-βS/α, (A∕∂V)=N=-(S+PVα)/αV

dA=(-βS/α)dP-[(S+PVα)/αV]dV

5-5, 5-6 H=H(S,V) dH=MdS+NdV=M(c/TdT-dP)+N(αVdT-βVdP)=(Mc/T+NαV)dT-(M+βNV)dP, dH=cdT+V(1-αT)dP比較, Mc/T+NαV=c, Mα+βN=αT-1

M=T(1+αV/βc), N=-cₚ/βc, (H∕∂S)=M=T(1+αV/βc), (H∕∂V)=N=-cₚ/βc

dH=T(1+αV/βc)dS-(cₚ/βcᵥ)dV

5-8 S=S(T,P) → dS=(S∕∂T)dT+(S∕∂P)dP=(cₚ/T)dT-αVdP i.e. (S∕∂P)=-(V∕∂T)ₚ=-αV

dS=0 ⸫(∂T/∂P)=αVT/c



5-10. dG=-SdT+VdP (G∕∂P)=V [(G∕∂P)/∂P]=(V∕∂P)

dA=-SdT-PdV(A∕∂V)=-P [(A∕∂V)/∂V]=-(P∕∂V) ⸫(∂²G∕∂P²)=-1/(∂²A∕∂V²)



5-7.

(c∕∂P)=[∂(∂H∕∂T)ₚ∕∂P]=[∂(∂H∕∂P)∕∂T]ₚ=[∂(V-αVT)∕∂T]ₚ=(V∕∂T)ₚ-[αV+αT(V∕∂T)ₚ+VT(α∕∂T)ₚ]

i.e. dV=αVdT- βVdP, dH=cdT+V(1-αT)dP

(c∕∂P)=(V∕∂T)ₚ-[αV+αT(V∕∂T)ₚ+VT(α∕∂T)ₚ]=-[α²+(α∕∂T)ₚ]VT

application to monatomic ideal gas, δQ=TdS Q=²δQ=∫²TdS

p.s. c=3R/2, c=5R/2, γ=5/3, c-c=R, α=1/T, β=1/P,

U(T) and H(T)P,V無關, dU=cdT, dH=cdT

DeHoff Ex.4-7 1 mole monatomic ideal gas changes from state 1(T=298K, P=1 atm) to state 2(T=298K, P=1000 atm), ask S=?

Sol: S=S(T,P) dS=(S∕∂T)dT+(S∕∂P)dP=(cₚ/T)dT-αVdP

S=∫²dS=∫ᴩ₁ᴾ₂-αVdP=-ᴩ₁ᴾ₂(V/T)dP=-ᴩ₁ᴾ₂(R/P)dP=Rln(P/P)=-57.4 J/K

Ex.4-10 Ask Q=? by following process. 1. reversible isothermal P(5 atm) P(1 atm). 2. reversible isobaric V V₂. 3. reversible isochoric T T₂.

Sol: 1. S=S(T,P) TdS=cdT-αVTdP →∆Q=²TdS=ᴩ₁ᴾ₂-αTVdP=-ᴩ₁ᴾ₂(RT/P)dP=RTln(P/P)

2. S=S(P,V) TdS=(cₚ/αV)dV+(βc/α)dP→∆Q=²TdS=ᴠ₁²(cₚ/αV)dV=ᴠ₁²(cT/V)dV= cTln(V/V)=5RTln(V/V)/2

3. S=S(T,V) TdS=f(T,V)=cdT+(αTβ)dV→∆Q=²TdS=ᵀ²cdT=cᵥ(T₂-T₁)

Ex.4-11 1 mole monatomic ideal gas changes from state 1(T=273K, P=1 atm) to state 2(T=?K, P=0.5 atm) by the change of V=22.4P , ask Q=? T=?

Sol: ideal gas follow PV=RT, V=22.4P=RT/P RT=22.4P² T= 22.4P²/R=68.2K

Q=∫²TdS=∫ᵀ²cdT -∫ᴩ₁ᴾ₂αTVdP=c(T₂-T₁)-∫ᴩ₁ᴾ₂22.4PdP=c(T₂-T₁)-11.2(P²-P²)

全站分類:知識學習 隨堂筆記
自訂分類:材料科學
發表迴響

會員登入