Contents ...
udn網路城邦
頃刻間綠豆沙牛奶專賣店真的好吃嗎? 》台北小吃吃什麼?這10家絕對不能錯過
2025/12/24 19:08
瀏覽8
迴響0
推薦0
引用0

跟著城市嚮導「老臺北胃」,用味道認識臺北

很多朋友來臺北,
都會問我同一個問題:
「臺北小吃那麼多,到底該從哪裡開始吃?」
夜市裡攤位一字排開、老店藏在巷弄轉角,
看起來都很有名,卻又怕吃錯、踩雷,
結果行程走完,反而沒真正記住臺北的味道。
我常被朋友笑說是「老臺北胃」。
不是因為特別會吃,而是因為在這座城市待久了,
知道哪些味道是陪著臺北人成長的日常。
這篇文章,就是我整理的一份清單。
如果你第一次來臺北,
我會帶你從這 10 樣最具代表性的臺北小吃開始,
不追一時爆紅、不走浮誇路線,
而是讓你吃完後能真正理解
原來,這就是臺灣的小吃文化。
跟著老臺北胃走,
用最簡單的方式,
把臺北的味道,一樣一樣記在心裡。

我怎麼選出這 10 大臺北小吃?

在臺北,
你隨便走進一條夜市或老街,
都可以輕易列出 30 種以上的小吃。
所以這份清單,
不是「臺北最好吃」的排名,
 而是我站在「第一次來臺北的旅客」角度,
做的推薦。
身為一個被朋友稱作「老臺北胃」的人,
我選這 10 樣小吃時,心裡一直放著幾個原則。

一吃就知道:這就是臺灣味

燒烤、火鍋很好吃,
但換個城市、換個國家,也吃得到。
我挑的,是那種
只要一入口,就會讓人聯想到的臺灣味。
 不需要解釋太多,舌頭就能懂。

不只是好吃,而是有「臺北日常感」

臺北的小吃迷人,
不只在味道,
而在它融入生活的方式。
我在意的是:

  1. 會不會出現在早餐、宵夜、下班後
  2. 有沒有陪伴這座城市很久的記憶

吃完之後,你會記得臺北

最後一個標準很簡單。
如果你回到家,
還會突然想起某個味道、某碗熱湯、某個攤位的香氣
那它就值得被放進這份清單裡。


接下來的 10 樣臺北小吃,
就是我會親自帶朋友去吃的在地美食。
不趕行程、不拚數量,
而是一口一口,
慢慢認識臺北。

第 1 家:饌堂-黑金滷肉飯(雙連店)|一碗就懂臺灣人的日常

如果只能用一道料理,
 來解釋臺灣人的日常飲食,
 那我一定會先帶你吃滷肉飯
在臺北,滷肉飯不是什麼特別的節慶料理,
 而是從早餐、午餐到宵夜,
 默默陪著很多人長大的味道。
而在眾多滷肉飯之中,
饌堂-黑金滷肉飯(雙連店)
 我很常帶第一次來臺北的朋友造訪的一家。


為什麼第一站,我會選饌堂?
饌堂的滷肉飯,走的是**「黑金系」路線**。
滷汁顏色深、香氣厚,
卻不死鹹、不油膩。
滷肉切得細緻,
肥肉入口即化,搭配熱騰騰的白飯,
每一口都是很完整、很臺灣的味道。
對第一次吃滷肉飯的旅客來說,
這種風味夠經典、也夠穩定
不需要太多心理準備,就能理解為什麼臺灣人這麼愛它。


不只是好吃,而是「現在的臺北感」
饌堂並不是那種躲在深巷裡的老攤,
空間乾淨、節奏俐落,
卻沒有失去滷肉飯該有的靈魂。
這也是我會推薦給旅客的原因之一:
它保留了臺灣小吃的核心味道,
同時也讓第一次來臺北的人,
吃得安心、坐得舒服。


老臺北胃的帶路小提醒
如果是第一次來:

  1. 一定要點招牌黑金滷肉飯
  2. 可以加一顆滷蛋,風味會更完整
  3. 搭配簡單的小菜,就很有臺灣家常感

這不是那種吃完會驚呼「哇!」的料理,
而是會讓你在幾口之後,
慢慢理解
原來,臺灣人的日常,就是這樣被一碗飯照顧著。

地址:103臺北市大同區雙連街55號1樓

電話:0225501379

菜單:https://bio.site/ZhuanTang

第 2 家:富宏牛肉麵|臺北深夜也醒著的一碗熱湯

如果說滷肉飯代表的是臺灣人的日常,
 那牛肉麵,
 就是很多臺北人心中最有份量的一餐。
而在臺北提到牛肉麵,
 富宏牛肉麵
 幾乎是夜貓族、加班族、外地旅客一定會被帶去的一站。


為什麼老臺北胃會帶你來吃富宏?
富宏最讓人印象深刻的,
不是華麗裝潢,
而是那鍋永遠冒著熱氣的紅燒湯頭
湯色濃而不混,
帶著牛骨與醬香慢慢熬出的厚度,
喝起來溫潤、不刺激,
卻會在嘴裡留下很深的記憶點。
牛肉給得大方,
燉到軟嫩卻不鬆散,
搭配彈性十足的麵條,
每一口都很直接、很臺北。


不分時間,任何時候都適合的一碗麵
富宏牛肉麵最迷人的地方,
在於它陪伴了無數個臺北的夜晚。
不管是深夜下班、看完演唱會、
或是剛抵達臺北、還沒適應時差,
這裡總有一碗熱湯在等你。
對旅客來說,
這種不用算時間、不用擔心打烊的安心感,
本身就是一種臺北特色。


老臺北胃的帶路小提醒
第一次來富宏,我會這樣點:

  1. 紅燒牛肉麵是首選
  2. 如果想吃得更過癮,可以加點牛筋或牛肚
  3. 湯先喝一口原味,再視情況調整辣度

這不是精緻料理,
卻是一碗能在任何時刻撐住你的牛肉麵。
在臺北,
很多夜晚,
就是靠這樣一碗熱湯走過來的。

地址:108臺北市萬華區洛陽街67號

電話:0223713028

菜單:https://www.facebook.com/pages/富宏牛肉麵-原建宏牛肉麵/

第 3 家:士林夜市・吉彖皮蛋涼麵|臺北夏天最有記憶點的一口清爽

如果你在夏天來到臺北,
 一定會很快發現一件事
 這座城市,真的很熱。
也正因為這樣,
 臺北的小吃世界裡,
 才會出現像「涼麵」這樣的存在。
而在士林夜市,
 吉彖皮蛋涼麵
 就是我很常帶旅客來吃的一家。


為什麼在夜市,我會帶你吃涼麵?
很多人對夜市的印象,
都是炸物、熱湯、重口味。
但真正的臺北夜市,
其實也很懂得照顧人的胃。
吉彖的涼麵,
冰涼的麵條拌上濃郁芝麻醬,
再加上切得細緻的皮蛋,
入口的第一瞬間,
就是一種「被降溫」的感覺。
那種清爽,
不是沒味道,
而是在濃香與清涼之間取得剛剛好的平衡


皮蛋,是靈魂,也是臺灣味的關鍵
對很多外國旅客來說,
皮蛋是既好奇、又有點猶豫的存在。
但我常說,
如果要嘗試皮蛋,
涼麵是一個非常溫柔的起點。
芝麻醬的香氣會先接住味蕾,
皮蛋的風味則在後段慢慢出現,
不衝、不嗆,
反而多了一層深度。
很多人吃完後,
都會露出那種「原來是這樣啊」的表情。


老臺北胃的帶路小提醒
第一次點吉彖皮蛋涼麵,我會建議:

  1. 一定要選皮蛋款,才吃得到特色
  2. 醬料先拌勻,再吃,風味會更完整
  3. 如果天氣真的很熱,這一碗會救你一整晚

這不是華麗的小吃,
卻非常臺北。
在悶熱的夜晚,
站在夜市人潮裡,
吃著一碗涼麵,
你會突然明白——

原來臺北的小吃,連氣候都一起考慮進去了。

地址:111臺北市士林區基河路114號

電話:0981014155

菜單:https://www.facebook.com/profile.php?id=100064238763064

第 4 家:胖老闆誠意肉粥|臺北人深夜最踏實的一碗粥

如果你問我,
 臺北人在深夜、下班後,
 最容易感到被安慰的食物是什麼——
 我會毫不猶豫地說:肉粥
而提到肉粥,
 胖老闆誠意肉粥
 就是很多老臺北人口中的那一味。


為什麼這一碗粥,會被叫做「誠意」?
胖老闆的肉粥,看起來很簡單。
白粥、肉燥、配菜,
沒有華麗擺盤,也沒有複雜作法。
但真正坐下來吃,你會發現:
這碗粥,不敷衍任何一個細節
粥體滑順、不稀薄,
肉燥香而不膩,
搭配各式家常小菜,
一口一口吃下去,
很自然就會放慢速度。
這種味道,
不是要你驚艷,
而是要你安心。


這不是觀光小吃,而是臺北人的生活片段
胖老闆誠意肉粥,
最迷人的地方,
就是它的客人。
你會看到:

  1. 剛下班的上班族
  2. 熬夜後來吃一碗熱粥的人
  3. 熟門熟路、點菜不用看菜單的老客人

這些畫面,
比任何裝潢都更能說明這家店在臺北的位置。
對旅客來說,
這是一個走進臺北人日常的入口


老臺北胃的帶路小提醒
第一次來吃,我會這樣建議:

  1. 肉粥一定要點,這是主角
  2. 配幾樣小菜一起吃,才有完整體驗
  3. 不用急,慢慢吃,這碗粥就是要你放鬆

這不是為了拍照而存在的小吃,
而是那種
**會讓人記得「那天晚上,我在臺北吃了一碗很溫暖的粥」**的味道。

地址:10491臺北市中山區長春路89-3號

電話:0913806139

菜單:https://lin.ee/xxbYZyS

第 5 家:圓環邊蚵仔煎|夜市裡最不能缺席的臺灣經典

如果要選一道
 最常出現在旅客記憶裡的臺灣小吃
 蚵仔煎一定排得上前幾名。
而在臺北,
 圓環邊蚵仔煎
 就是那種很多臺北人從小吃到大的存在。


為什麼蚵仔煎,這麼能代表臺灣?
蚵仔煎的魅力,
不在於精緻,
而在於它把幾種看似簡單的食材,
煎成了一種獨特的口感。
新鮮蚵仔的海味、
雞蛋的香氣、
地瓜粉形成的滑嫩外皮,
最後再淋上甜中帶鹹的醬汁,
一口下去,
就是夜市的完整畫面。
這種味道,
很難在其他國家找到替代品。


圓環邊,吃的是記憶感
圓環邊蚵仔煎,
沒有多餘的包裝,
也不刻意迎合潮流。
它留下來的原因很簡單
味道夠穩、節奏夠快、
讓人一吃就知道「對,就是這個」。
對旅客來說,
這是一家
不需要研究、不需要比較,就能安心點蚵仔煎的地方


老臺北胃的帶路小提醒
第一次吃蚵仔煎,我會這樣建議:

  1. 趁熱吃,口感最好
  2. 不用急著加辣,先吃原味
  3. 醬汁是靈魂,別急著把它拌掉

蚵仔煎不是細嚼慢嚥的料理,
它屬於人聲鼎沸、鍋鏟作響的夜市時刻。
站在人群裡,
吃著一盤熱騰騰的蚵仔煎,
你會很清楚地感受到
這,就是臺北的夜晚。

地址:103臺北市大同區寧夏路46號

電話:0225580198

菜單:https://oystera.com.tw/menu

第 6 家:阿淑清蒸肉圓|第一次吃肉圓,就該從這裡開始

說到臺灣小吃,
 很多人腦中一定會出現「肉圓」兩個字。
但真正吃過之後才會發現,
 肉圓,從來不只有一種樣子。
在臺北,
 阿淑清蒸肉圓
 就是我很常拿來介紹「清蒸派肉圓」的一家。


清蒸肉圓,和你想像的不一樣
不少旅客對肉圓的第一印象,
來自油炸版本,
外皮厚、口感重。
而阿淑的清蒸肉圓,
完全是另一個方向。
外皮晶瑩、滑嫩,
帶著自然的彈性,
不油、不膩,
一入口反而顯得清爽。
內餡扎實,
豬肉香氣清楚,
搭配特製醬汁,
味道層次簡單卻很乾淨。


為什麼我會推薦給第一次來臺北的旅客?
因為這顆肉圓,
不需要適應期。
它不刺激、不厚重,
即使是第一次嘗試臺灣小吃的人,
也能輕鬆接受。
對旅客來說,
這是一顆
「吃得懂、也記得住」的肉圓。


老臺北胃的帶路小提醒
第一次來阿淑,我會這樣吃:

  1. 直接點一顆清蒸肉圓,吃原味
  2. 醬汁先別全部拌開,邊吃邊調整
  3. 放慢速度,感受外皮的口感變化

這不是夜市裡熱鬧喧囂的料理,
而是那種
安靜地展現臺灣小吃功夫的味道。
當你吃完這顆肉圓,
會更明白一件事
臺灣小吃的魅力,
往往藏在這些細節裡。

地址:242新北市新莊區復興路一段141號

電話:0229975505

第 7 家:胡記米粉湯|一碗最貼近臺北早晨的味道

如果說前面幾樣小吃,
 是臺北的熱鬧與記憶,
 那麼米粉湯
 就是這座城市最真實的日常。
而在臺北,
 胡記米粉湯
 是很多人從小吃到大的存在。


為什麼米粉湯,這麼「臺北」?
米粉湯不是重口味料理,
它靠的不是刺激,
而是一碗清澈卻有深度的湯。
胡記的湯頭,
用豬骨慢慢熬出香氣,
喝起來清爽、不油,
卻能在喉嚨留下溫度。
米粉細軟,
吸附湯汁後入口順滑,
簡單到不能再簡單,
卻正是臺北人習以為常的早晨風景。


配菜,才是這一碗的靈魂延伸
在胡記吃米粉湯,
主角雖然是湯,
但真正讓人滿足的,
往往是那些小菜。
紅燒肉、豬內臟、燙青菜,
隨意點上幾樣,
湯一口、菜一口,
就是很多臺北人記憶中的早餐組合。
對旅客來說,
這是一種
不需要解釋,就能融入的臺北生活感。


老臺北胃的帶路小提醒
第一次來胡記,我會這樣建議:

  1. 一定要點米粉湯,湯先喝
  2. 再配 1~2 樣小菜,體驗會完整很多
  3. 這一餐適合慢慢吃,不用趕

這不是為了觀光而存在的小吃,
而是一碗
每天準時出現在臺北人生活裡的湯。
當你坐在店裡,
聽著湯勺碰撞的聲音,
你會突然感覺到——
原來,臺北的早晨,
就是從這樣一碗米粉湯開始的。

地址:106臺北市大安區大安路一段9號1樓

電話:0227212120

第 8 家:藍家割包|一口咬下的臺灣街頭記憶

如果要選一道
 外國旅客一看到就會好奇、吃完又會記住的小吃
 割包,一定在名單裡。
而在臺北,
 藍家割包
 就是我很放心帶旅客來認識這道經典的一站。


割包,為什麼被叫做「臺灣漢堡」?
割包的結構其實很簡單:
鬆軟的白饅頭、
燉得入味的滷五花肉、
酸菜、花生粉、香菜。
但真正迷人的,
是這些元素組合在一起時,
形成的層次感。
肉香、甜味、鹹味、清爽度,
在一口之間同時出現,
沒有誰搶戲,
卻彼此剛好。
這種平衡感,
正是臺灣小吃很迷人的地方。


藍家割包不是走浮誇路線,
它給人的感覺很直接
就是你期待中的割包樣子
饅頭柔軟不乾,
五花肉肥瘦比例恰到好處,
入口即化卻不膩口,
花生粉的甜香收尾,
讓整體味道非常完整。
對第一次吃割包的旅客來說,
這是一個
不會出錯、也很容易愛上的版本


老臺北胃的帶路小提醒
第一次吃藍家割包,我會這樣建議:

  1. 直接點招牌割包,不要改配料
  2. 如果有香菜,建議保留,味道會更完整
  3. 趁熱吃,饅頭口感最好

割包不是精緻料理,
卻非常有記憶點。
站在街頭,
拿著一顆熱騰騰的割包,
邊走邊吃,
你會很清楚地感受到
這一口,就是臺灣的街頭生活。

地址:100臺北市中正區羅斯福路三段316巷8弄3號

電話:0223682060

菜單:https://instagram.com/lan_jia_gua_bao?utm_medium=copy_link

第 9 家:御品元冰火湯圓|臺北夜晚最溫柔的一碗甜

吃了一整天的臺北小吃,
 到了這個時候,
 胃其實已經差不多滿了。
但只要天氣一涼,
 或夜色慢慢降下來,
 你還是會想找一碗——
 不是為了吃飽,而是為了舒服的甜點。
這時候,我通常會帶你來 御品元冰火湯圓


為什麼叫「冰火」?這碗湯圓的關鍵就在這裡
御品元最有特色的地方,
就在於它的「冰火交錯」。
熱騰騰的湯圓,
外皮軟糯、內餡濃香,
搭配冰涼清甜的桂花蜜湯,
一口下去,
溫度在嘴裡交替出現。
不是衝突,
而是一種很細膩的平衡。
這樣的吃法,
也正是臺灣甜點很擅長的地方——
不張揚,但很有記憶點。


這是一碗,會讓人慢下來的甜點
和夜市裡熱鬧的甜品不同,
御品元的冰火湯圓,
更像是一個讓人停下腳步的存在。
你會發現,
坐在這裡吃湯圓的人,
說話聲都會不自覺地變小。
對旅客來說,
這不只是吃甜點,
而是一個
把白天的熱鬧慢慢收進回憶裡的時刻


老臺北胃的帶路小提醒
第一次吃御品元,我會這樣建議:

  1. 點招牌冰火湯圓,體驗完整特色
  2. 先單吃湯圓,再搭配湯一起吃
  3. 放慢速度,這一碗不適合趕時間

這不是為了拍照而存在的甜點,
而是一碗
會讓你記得「那天晚上在臺北,很舒服」的湯圓。

地址:106臺北市大安區通化街39巷50弄31號

電話:0955861816

菜單:https://instagram.com/lan_jia_gua_bao

第 10 家:頃刻間綠豆沙牛奶專賣店|把臺北的味道,留在最後一口清甜

走到這一站,
 其實已經不需要再吃什麼大份量的東西了。
這時候,
 最適合的,
 是一杯不吵鬧、不張揚,
 卻會默默留在記憶裡的飲品。
頃刻間綠豆沙牛奶
 就是我很常用來替一天畫下句點的選擇。


綠豆沙牛奶,為什麼這麼「臺灣」?
在臺灣,
飲料不只是解渴,
而是一種生活節奏。
綠豆沙牛奶看起來簡單,
但真正好喝的版本,
靠的是火候、比例,
還有耐心。
頃刻間的綠豆沙,
口感細緻、不粗顆,
甜度自然、不膩口,
牛奶的加入,
讓整杯變得柔順而溫和。
這不是衝擊味蕾的飲料,
而是一種
喝完之後,會覺得剛剛那一刻很舒服的甜。


為什麼我會用它當作最後一站?
因為它很臺北。
你可以外帶,
邊走邊喝;
也可以站在店門口,
慢慢把杯子喝空。
沒有儀式感,
卻很真實。
對旅客來說,
這杯綠豆沙牛奶,
就像是把今天吃過的所有味道,
溫柔地整理好,
帶走。


老臺北胃的帶路小提醒
第一次喝頃刻間,我會這樣建議:

  1. 直接點招牌綠豆沙牛奶
  2. 正常甜就很剛好,不用特別調整
  3. 找個角落慢慢喝,別急著趕路

這一杯,
不會讓你驚呼,
卻會在回程的路上,
突然想起來。
原來,臺北的味道,是這樣結束一天的。

地址:111臺北市士林區小北街1號

電話:0228818619

菜單:https://instagram.com/chill_out_moment?igshid=YmMyMTA2M2Y=

如果只有 3 天的自助旅行在臺北,怎麼吃這 10 家?

第一次來臺北,
時間有限、胃容量也有限,
與其每一家都趕,不如照著節奏吃
這份 3 天小吃路線,
是老臺北胃會帶朋友實際走的版本:
不爆走、不硬塞,
讓你每天都吃得剛剛好。

臺北 3 天小吃推薦行程表(老臺北胃版本)

天數

時段

店家名稱

小吃類型

Day 1

午餐

饌堂-黑金滷肉飯(雙連店)

滷肉飯

Day 1

下午

阿淑清蒸肉圓

肉圓

Day 1

晚餐

富宏牛肉麵

牛肉麵

Day 1

宵夜

胖老闆誠意肉粥

粥品

Day 2

早餐

胡記米粉湯

米粉湯

Day 2

下午

藍家割包

割包

Day 2

晚上

士林夜市-吉彖皮蛋涼麵

涼麵

Day 2

夜市

圓環邊蚵仔煎

蚵仔煎

Day 3

下午

御品元冰火湯圓

甜點

Day 3

收尾

頃刻間綠豆沙牛奶專賣店

飲品


雖然每個小吃的地點都有一點距離,但是你也知道,好吃的小吃,是值得你花一點時間前往品嘗
老臺北胃的小提醒

  1. 不需要每一家都點到最滿
  2. 留一點餘裕,才會想再回來
  3. 臺北小吃的魅力,不在於吃多少,而在於記住了什麼味道

當你照著這 3 天走完,
你會發現,
臺北不是靠一兩道名菜被記住的,
而是靠這些看似日常、卻很真實的小吃。
下次再來,老臺北胃再帶你吃更深的那一輪。

老臺北胃帶路|這 10 口,就是我心中的臺北

寫到這裡,
 其實已經不是在推薦哪一家小吃了。
而是在回頭看,
 這座城市,是怎麼用食物陪著人生活的。
滷肉飯、牛肉麵、肉粥、米粉湯,
 不是為了成為觀光名單而存在,
 而是每天默默出現在臺北人的日子裡。
夜市裡的蚵仔煎、涼麵、割包,
 熱鬧、吵雜、節奏很快,
 卻也正是臺北最真實的樣子。
而最後那碗湯圓、那杯綠豆沙牛奶,
 則是在一天結束時,
 替味蕾留下一個溫柔的句點。


如果你問我,
「這 10 家是不是臺北最好吃的小吃?」
我會說,
它們不一定是排行榜第一名,
卻是我真的會帶朋友去吃的版本。
因為它們吃得到:

  1. 臺北人的日常
  2. 巷弄裡的熟悉感
  3. 不需要解釋,就能被理解的味道

如果你是第一次來臺北,
跟著這份清單走,
你不一定會吃得最飽,
但你一定會記得——
臺北,是什麼味道。
而如果有一天,
你又再回到這座城市,
走進熟悉的街口、
看到冒著熱氣的小攤,
你也會開始懂得,
為什麼老臺北胃,
總是記得這些看似平凡的滋味。
因為,真正留在心裡的,
從來不是吃過多少,
而是哪一口,讓你想起臺北。

 

富宏牛肉麵容易接受嗎?

走完這 10 家,

你可能會發現一件事頃刻間綠豆沙牛奶專賣店會不會太鹹?

臺北的小吃,其實不急著被你記住。

它們就安靜地存在在街角、夜市、轉彎處,富宏牛肉麵新手友善嗎?

等你有一天,再回到這座城市。饌堂-黑金滷肉飯(雙連店)辣的推薦嗎?

如果你是第一次來臺北,士林夜市-吉彖皮蛋涼麵會不會太油?

希望這份「老臺北胃帶路」的清單,

能幫你少一點猶豫、多一點安心。

不用擔心踩雷,藍家割包會不會太甜?

也不用為了排行而奔波,御品元冰火湯圓值得專程去嗎?

只要照著節奏走,

你就會吃到屬於自己的臺北味道。

而如果你已經來過臺北,

那更希望這篇文章,阿淑清蒸肉圓CP 值高嗎?

能帶你走進那些

你可能錯過、卻一直都在的日常小吃。

因為真正迷人的旅行,

從來不是把清單全部打勾,

而是某一天,

你突然想起那碗飯、那口湯、那杯甜,富宏牛肉麵在地人怎麼說?

然後在心裡對自己說一句:御品元冰火湯圓當宵夜適合嗎?

「下次再去臺北,還想再吃一次。」

把這篇文章存起來、分享給一起旅行的人,

或是在規劃行程時,再回來看看。

讓味道,成為你認識臺北的方式。

下一次來臺北,

別急著走遠。

老臺北胃,富宏牛肉麵原味就好嗎?

會一直在這些地方,

等你再回來。

Natural and synthetic embryos side by side with heart and head folds stained in color. Credit: Courtesy of M. Zernicka-Goetz Researchers have created synthetic mouse embryos from stem cells with beating hearts and brain foundations, providing insights into early pregnancy development. Scientists have created model mouse embryos from stem cells that have beating hearts, as well as the foundations for a brain and all of the other organs in the mouse body. Stem cells are the body’s master cells, which can develop into almost any cell type in the body. The work was done by researchers from the University of Cambridge and the California Institute of Technology (Caltech). The results are the culmination of more than 10 years of research, and they could help scientists understand why some embryos fail while others go on to develop into a fetus as part of a healthy pregnancy. In addition, the results could be used to guide the repair and development of synthetic human organs for transplantation. A paper describing the breakthrough appears today (August 25) in the journal Nature. The research was conducted in the laboratory of Magdalena Zernicka-Goetz, Bren Professor of Biology and Biological Engineering at Caltech. Zernicka-Goetz is also a professor of mammalian development and stem cell biology in Cambridge’s Department of Physiology, Development and Neuroscience. Mimicking Natural Embryo Development in the Lab No sperm or eggs were used in the development of the embryo model.  Instead, by guiding the three different kinds of stem cells that are present in early mammalian development to the stage where they begin interacting, the researchers were able to mimic natural processes in the laboratory. The scientists were able to get the stem cells to “talk” to each other by inducing the expression of a particular set of genes and establishing a unique environment for their interactions. Natural and synthetic embryos side by side show comparable brain and heart formation. Credit: Amadei and Handford Over time the stem cells self-organized into structures that progressed through the successive developmental stages until the synthetic embryos had beating hearts and the foundations for a brain. They even had the yolk sac where the embryo develops and from which it receives nutrients in its first weeks. This is the most advanced stage of development achieved to date in a stem cell-derived model. A major advance in this research is the ability to generate the entire brain, in particular the anterior region, which has been a “holy grail” in the development of synthetic embryos. “This opens new possibilities to study the mechanisms of neurodevelopment in an experimental model,” Zernicka-Goetz says. “In fact, we demonstrate the proof of this principle in the paper by knocking out a gene already known to be essential for formation of the neural tube, precursor of the nervous system, and for brain and eye development. In the absence of this gene, the synthetic embryos show exactly the known defects in brain development as in an animal carrying this mutation. This means we can begin to apply this kind of approach to the many genes with unknown function in brain development.” “Our mouse embryo model not only develops a brain, but also a beating heart, all the components that go on to make up the body,” she explains. “It’s just unbelievable that we’ve gotten this far. This has been the dream of our community for years, and the major focus of our work for a decade, and finally we’ve done it.” Studying Early Development and Pregnancy Success Through Synthetic Embryos For a human embryo to successfully develop, there needs to be a “dialogue” between the tissues that will become the embryo and the tissues that will connect the embryo to the mother. In the first week after fertilization, three types of stem cells develop: one will eventually become the tissues of the body, and the other two will support the embryo’s development. One of these latter two types, known as extraembryonic stem cells, will become the placenta, which connects the fetus to the mother and provides oxygen and nutrients. The other will become the yolk sac, where the embryo grows and from which it receives nutrients in early development. Many pregnancies fail at the point when the three types of stem cells begin to send mechanical and chemical signals to each other, which tell the embryo how to develop properly. “This early period is the foundation for everything else that follows in pregnancy,” Zernicka-Goetz says. “If it goes wrong, the pregnancy will fail.” Over the past decade, Zernicka-Goetz’s team has been investigating these earliest stages of pregnancy to understand why some pregnancies fail and some succeed. “The stem cell embryo model is important because it gives us accessibility to the developing structure at a stage that is normally hidden from us due to the implantation of the tiny embryo into the mother’s womb,” Zernicka-Goetz says. “This accessibility allows us to manipulate genes to understand their developmental roles in a model experimental system.” To guide the development of their synthetic embryo, the scientists put together cultured stem cells representing each of the three types of tissue. They allowed them to develop in proportions and an environment conducive to their growth and communication with each other, leading to their eventual self-assembly into an embryo. The researchers discovered that the extraembryonic cells signal to embryonic cells through chemical signals but also mechanistically, or through touch, guiding the embryo’s development. “This period of human life is so mysterious, so to be able to see how it happens in a dish—to have access to these individual stem cells, to understand why so many pregnancies fail and how we might be able to prevent that from happening—is quite special,” Zernicka-Goetz says. “We looked at the dialogue that has to happen between the different types of stem cells at that time—we’ve shown how it occurs and how it can go wrong.” Potential Applications: Synthetic Human Organs and Transplantation While the current research was carried out in mouse models, the scientists are developing an analogous model for human embryo development to understand mechanisms behind crucial processes that would be otherwise impossible to study in real embryos. If these methods are demonstrated to be successful with human stem cells in the future, they could also be used to guide the development of synthetic organs for patients awaiting transplants. “There are so many people around the world who wait for years for organ transplants,” Zernicka-Goetz says. “What makes our work so exciting is that the knowledge coming out of it could be used to grow correct synthetic human organs to save lives that are currently lost. It should also be possible to affect and heal adult organs by using the knowledge we have on how they are made.” Reference: “Synthetic embryos complete gastrulation to neurulation and organogenesis” by Gianluca Amadei, Charlotte E. Handford, Chengxiang Qiu, Joachim De Jonghe, Hannah Greenfeld, Martin Tran, Beth K. Martin, Dong-Yuan Chen, Alejandro Aguilera-Castrejon, Jacob H. Hanna, Michael Elowitz, Florian Hollfelder, Jay Shendure, David M. Glover and Magdalena Zernicka-Goetz, 25 August 2022, Nature. DOI: 10.1038/s41586-022-05246-3 The paper is titled “Stem cell-derived mouse embryos develop within an extra-embryonic yolk sac to form anterior brain regions and a beating heart.” The co-first authors are Gianluca Amadei and Charlotte Handford of the University of Cambridge. Caltech co-authors are postdoctoral scholars Hannah Greenfeld and Dong-Yuan Chen; graduate student Martin Tran; Michael Elowitz, Professor of Biology and Bioengineering and Howard Hughes Medical Institute Investigator; and David Glover, Research Professor of Biology and Biological Engineering. Additional co-authors are Chengxiang Qiu and Beth Martin of the University of Washington; Joachim De Jonghe and Florian Hollfelder of the University of Cambridge; Alejandro Aguilera-Castrejon and Jacob Hanna of the Weizmann Institute of Science in Israel; and Jay Shendure of the University of Washington, the Brotman Baty Institute for Precision Medicine in Seattle, the Allen Discovery Center for Cell Lineage Tracing in Seattle, and the Howard Hughes Medical Institute in Seattle. Funding was provided by the National Institutes of Health, the European Research Council, the Wellcome Trust, Open Philanthropy/Silicon Valley Community Foundation and Weston Havens Foundation, and the Centre for Trophoblast Research.

A study in Nature Genetics examined the genetics of over 1.3 million individuals, uncovering 44 migraine-related genetic variants and suggesting new therapeutic pathways for treatment. A new study of migraine reveals new biological pathways for treatment. A large international study led by deCODE Genetics on the genetics of migraine provides novel insights into the biology of migraine enabling detection of rare variants protecting against migraine, opening an avenue for potential development of novel drug targets. In a study published today in Nature Genetics, a group of international scientists led by deCODE Genetics in Iceland, a subsidiary of Amgen Inc, analyzed genetic data from over 1,3 million participants of which 80 thousand had migraine. The scientists focused on detecting sequence variants associated with the two main subtypes of migraine: migraine with aura (often referred to as classical migraine) and migraine without aura. The results highlight several genes that affect one of these migraine subtypes over the other, and point to new biological pathways that could be targeted for therapeutic developments. Migraine: A Widespread Chronic Pain Disorder Migraine is among the most common chronic pain disorders worldwide, with up to 20% of adults affected. Although recent advances have been made in studies of the genetics and underlying biology of migraine and new treatments recently developed that are effective for many migraine sufferers, they do not work for all types of migraine Novel Genetic Associations and Variants The study revealed associations with 44 variants, 12 of which are novel. Four novel migraine with aura associations were revealed and 13 variants associated primarily with migraine without aura. Of particular interest were three rare variants with large effects pointing to distinct pathologies underlying different types of migraine. Thus, a rare frameshift variant in the PRRT2 gene confers a large risk of migraine with aura and with another brain disease, epilepsy, but not of migraine without aura. Kari Stefansson CEO of deCODE genetics and Gyda Bjornsdottir leader of the project on behalf of deCODE genetics. Credit: deCODE genetics In SCN11A, a gene known to play a key role in pain sensation, the scientists detected several rare loss-of-function variants associated with protection effects against migraine, while a common missense variant in the same gene is associated with modest risk of migraine. Finally, a rare variant pointing to the KCNK5 gene, confers large protection against severe migraine and brain aneurysms, either identifying a common pathway between the two diseases or suggesting that some cases of early brain aneurysms may be misclassified as migraine. Significance of the Study “What makes our study unique is that it includes large datasets from sequenced individuals enabling detection of rare variants protecting against migraine, potentially opening an avenue for development of novel drug targets,“ says Kari Stefansson CEO of deCODE genetics. Reference: “Rare variants with large effects provide functional insights into the pathology of migraine subtypes, with and without aura” by Gyda Bjornsdottir, Mona A. Chalmer, Lilja Stefansdottir, Astros Th. Skuladottir, Gudmundur Einarsson, Margret Andresdottir, Doruk Beyter, Egil Ferkingstad, Solveig Gretarsdottir, Bjarni V. Halldorsson, Gisli H. Halldorsson, Anna Helgadottir, Hannes Helgason, Grimur Hjorleifsson Eldjarn, Adalbjorg Jonasdottir, Aslaug Jonasdottir, Ingileif Jonsdottir, Kirk U. Knowlton, Lincoln D. Nadauld, Sigrun H. Lund, Olafur Th. Magnusson, Pall Melsted, Kristjan H. S. Moore, Asmundur Oddsson, Pall I. Olason, Asgeir Sigurdsson, Olafur A. Stefansson, Jona Saemundsdottir, Gardar Sveinbjornsson, Vinicius Tragante, Unnur Unnsteinsdottir, G. Bragi Walters, Florian Zink, Linn Rødevand, Ole A. Andreassen, Jannicke Igland, Rolv T. Lie, Jan Haavik, Karina Banasik, Søren Brunak, Maria Didriksen, Mie T. Bruun, Christian Erikstrup, Lisette J. A. Kogelman, Kaspar R. Nielsen, Erik Sørensen, Ole B. Pedersen, Henrik Ullum, DBDS Genetic Consortium, Gisli Masson, Unnur Thorsteinsdottir, Jes Olesen, Petur Ludvigsson, Olafur Thorarensen, Anna Bjornsdottir, Gudrun R. Sigurdardottir, Olafur A. Sveinsson, Sisse R. Ostrowski, Hilma Holm, Daniel F. Gudbjartsson, Gudmar Thorleifsson, Patrick Sulem, Hreinn Stefansson, Thorgeir E. Thorgeirsson, Thomas F. Hansen and Kari Stefansson, 26 October 2023, Nature Genetics. DOI: 10.1038/s41588-023-01538-0 The joint effort of the international research team was led by scientists at deCODE genetics in Iceland and included collaborating scientists from the Copenhagen Hospital Biobank and Danish Blood Bank Study, the HUSK study in Norway, the Intermountain Health study in the US, and data generated by the large population-based studies from the UK Biobank and FinnGen. Based in Reykjavik, Iceland, deCODE is a global leader in analyzing and understanding the human genome. Using its unique expertise and population resources, deCODE has discovered genetic risk factors for dozens of common diseases. The purpose of understanding the genetics of disease is to use that information to create new means of diagnosing, treating, and preventing disease.

A parvalbumin interneuron (blue) surrounded by the perineuronal net. Credit: The Hospital for Sick Children (SickKids) SickKids researchers discover that a matrix called the perineuronal net may be responsible for why human memories become more specific throughout childhood. How do our brains develop the ability to form particular memories? A pioneering preclinical study conducted by a research group at The Hospital for Sick Children (SickKids) might have discovered a molecular cause behind memory changes during early childhood. The type of memories often associated with the term “memory” are event-based memories, or episodic memories, which are associated with a certain context. In contrast, the memories of young children are typically more general or “gist”-based and usually lack a specific contextual link. In a study published in Science led by Drs. Paul Frankland and Sheena Josselyn, both Senior Scientists in the Neurosciences & Mental Health program at SickKids, the researchers pinpoint the molecular mechanisms underlying the change from gist-like to episodic memory in mice. The team notes that understanding this change, which generally occurs between four and six years old in children, may inform new insights into child development research and conditions which affect the brain, from autism spectrum disorder to concussion. “Researchers have studied how episodic memory develops for decades, but thanks to the development of precise cellular interventions we were now able to examine this question at the molecular level for the very first time,” says Frankland, who also holds a Canada Research Chair in Cognitive Neurobiology. Growth of the Perineuronal Net May Trigger Changes in Memory In adults, memory traces (also known as engrams) are made up of 10 to 20 percent of neurons, but the overall size of these engrams is doubled in young children, with 20 to 40 percent of neurons making up an engram supporting a memory. So why the change? The hippocampus, a part of the brain responsible for learning and memory, contains a variety of neurons including a type of inhibitory cell called a parvalbumin-expressing (PV) interneuron. These inhibitory cells constrain the size of the engram and enable memory specificity. The research team identified that as these interneurons mature, memory transitions from general to more specific, and engrams are formed at the appropriate size. Using viral gene transfer technology developed by Dr. Alexander Dityatev, head of the Molecular Neuroplasticity research group at the German Center for Neurodegenerative Diseases, the researchers decided to delve deeper and explore the reason for this change. They found that as a dense extracellular matrix, known as the perineuronal net, develops around these interneurons in the hippocampus, the interneurons mature, shifting the way our brain creates engrams and stores memories. “Once we identified the perineuronal net as a key factor in interneuron maturation, we were able to accelerate the net’s development and create specific episodic, rather than general, memories in juvenile mice,” says Josselyn, who holds a Canada Research Chair in Circuit Basis of Memory. Informing New Insights Into Brain Function and Cognition While the team was able to trigger this change in memory type by accelerating the development of the perineuronal net, they also note that the reasons for the age difference between gist-like and episodic memories should not be overlooked. “When you think about what purpose memory serves, it makes sense that a child’s memory would function differently from an adult,” explains Adam Ramsaran, a Ph.D. candidate in the Frankland Lab and first author on the study. “At three years old, you don’t need to remember the specifics. A gist-like memory helps children build a large knowledge base which can get more specific as they grow older and have more experiences.” Building on these molecular discoveries, the research team sped up the growth of the perineuronal net by providing an enriched environment to allow the formation of specific memories, a finding which is helping to inform child development research underway at SickKids and the University of Toronto. “Outside of memory development, we also found similar maturation-type mechanisms involved in different sensory systems of the brain,” says Frankland. “The same brain mechanism may be used by several different brain regions for several different purposes, which presents exciting new opportunities for research and collaboration.” Reference: “A shift in the mechanisms controlling hippocampal engram formation during brain maturation” by Adam I. Ramsaran, Ying Wang, Ali Golbabaei, Stepan Aleshin, Mitchell L. de Snoo, Bi-ru Amy Yeung, Asim J. Rashid, Ankit Awasthi, Jocelyn Lau, Lina M. Tran, Sangyoon Y. Ko, Andrin Abegg, Lana Chunan Duan, Cory McKenzie, Julia Gallucci, Moriam Ahmed, Rahul Kaushik, Alexander Dityatev, Sheena A. Josselyn and Paul W. Frankland, 4 May 2023, Science. DOI: 10.1126/science.ade6530 This study was funded by Brain Canada, the Canadian Institutes of Health Research (CIHR), the University of Toronto, SickKids Research Institute, the German Research Foundation, the German Center for Neurodegenerative Diseases, the National Institutes of Health (NIH), Natural Sciences and Engineering Research Council of Canada (NSERC), Ontario Graduate Scholarship program, Ontario Trillium Scholarship program and the Vector Institute.

RE98915RGPOIOKJ



士林夜市-吉彖皮蛋涼麵本地人會吃嗎? 》台北小吃top10聚餐餐廳|最真實心得分享阿淑清蒸肉圓推薦點什麼? 》台北小吃美食人氣美食完整評比|10家一次破解胖老闆誠意肉粥口味會太清淡嗎? 》台北小吃top10聚餐餐廳|最真實心得分享

限會員,要發表迴響,請先登入