Contents ...
udn網路城邦
Taiwan custom neck pillow ODM factory 》minimizing
2025/05/06 06:19
瀏覽43
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Innovative insole ODM solutions in China

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.High-performance insole OEM factory Taiwan

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Thailand insole ODM design and production

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Insole ODM factory in China

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Indonesia eco-friendly graphene material processing

A pioneering collaboration has been established to focus on using quantum computing to enhance genomics. The team will develop algorithms to accelerate the analysis of pangenomic datasets, which could revolutionize personalized medicine and pathogen management. Credit: SciTechDaily.com A new project unites world-leading experts in quantum computing and genomics to develop new methods and algorithms to process biological data. Researchers aim to harness quantum computing to speed up genomics, enhancing our understanding of DNA and driving advancements in personalized medicine A new collaboration has formed, uniting a world-leading interdisciplinary team with skills across quantum computing, genomics, and advanced algorithms. They aim to tackle one of the most challenging computational problems in genomic science: building, augmenting, and analyzing pangenomic datasets for large population samples. Their project sits at the frontiers of research in both biomedical science and quantum computing. The project, which involves researchers based at the University of Cambridge, the Wellcome Sanger Institute, and EMBL’s European Bioinformatics Institute (EMBL-EBI), has been awarded up to US $3.5 million to explore the potential of quantum computing for improvements in human health. The team aims to develop quantum computing algorithms with the potential to speed up the production and analysis of pangenomes – new representations of DNA sequences that capture population diversity. Their methods will be designed to run on emerging quantum computers. The project is one of 12 selected worldwide for the Wellcome Leap Quantum for Bio (Q4Bio) Supported Challenge Program. Advancements in Genomics Since the initial sequencing of the human genome over two decades ago, genomics has revolutionized science and medicine. Less than one percent of the 6.4 billion letters of DNA code differs from one human to the next, but those genetic differences are what make each of us unique. Our genetic code can provide insights into our health, help to diagnose disease, or guide medical treatments. However, the reference human genome sequence, which most subsequently sequenced human DNA is compared to, is based on data from only a few people, and doesn’t represent human diversity. Scientists have been working to address this problem for over a decade, and in 2023 the first human pangenome reference was produced. A pangenome is a collection of many different genome sequences that capture the genetic diversity in a population. Pangenomes could potentially be produced for all species, including pathogens such as SARS-CoV-2. Quantum Computing in Genomics Pangenomics, a new domain of science, demands high levels of computational power. While the existing human reference genome structure is linear, pangenome data can be represented and analyzed as a network, called a sequence graph, which stores the shared structure of genetic relationships between many genomes. Comparing subsequent individual genomes to the pangenome then involves mapping a route for their sequences through the graph. In this new project, the team aims to develop quantum computing approaches with the potential to speed up both the key processes of mapping data to graph nodes, and finding good routes through the graph. Quantum technologies are poised to revolutionize high-performance computing. Classical computing stores information as bits, which are binary — either 0 or 1. However, a quantum computer works with particles that can be in a superposition of different states simultaneously. Rather than bits, information in a quantum computer is represented by qubits (quantum bits), which could take on the value 0, or 1, or be in a superposition state between 0 and 1. It takes advantage of quantum mechanics to enable solutions to problems that are not practical to solve using classical computers. Challenges and Future Prospects However, current quantum computer hardware is inherently sensitive to noise and decoherence, so scaling it up presents an immense technological challenge. While there have been exciting proof of concept experiments and demonstrations, today’s quantum computers remain limited in size and computational power, which restricts their practical application. But significant quantum hardware advances are expected to emerge in the next three to five years. The Wellcome Leap Q4Bio Challenge is based on the premise that the early days of any new computational method will advance and benefit most from the co-development of applications, software, and hardware – allowing optimizations with not-yet-generalizable, early systems. Building on state-of-the-art computational genomics methods, the team will develop, simulate and then implement new quantum algorithms, using real data. The algorithms and methods will be tested and refined in existing, powerful High Performance Compute (HPC) environments initially, which will be used as simulations of the expected quantum computing hardware. They will test algorithms first using small stretches of DNA sequence, working up to processing relatively small genome sequences like SARS-CoV-2, before moving to the much larger human genome. Perspectives From the Team Dr. Sergii Strelchuk, Principal Investigator of the project from the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, said: “The structure of many challenging problems in computational genomics and pangenomics in particular make them suitable candidates for speedups promised by quantum computing. We are on a thrilling journey to develop and deploy quantum algorithms tailored to genomic data to gain new insights, which are unattainable using classical algorithms.” David Holland, Principal Systems Administrator at the Wellcome Sanger Institute, who is working to create the High Performance Compute environment to simulate a quantum computer, said: “We’ve only just scratched the surface of both quantum computing and pangenomics. So to bring these two worlds together is incredibly exciting. We don’t know exactly what’s coming, but we see great opportunities for major new advances. We are doing things today that we hope will make tomorrow better.” Dr. David Yuan, Project Lead at EMBL-EBI, said: “On the one hand, we’re starting from scratch because we don’t even know yet how to represent a pangenome in a quantum computing environment. If you compare it to the first moon landings, this project is the equivalent of designing a rocket and training the astronauts. On the other hand, we’ve got solid foundations, building on decades of systematically annotated genomic data generated by researchers worldwide and made available by EMBL-EBI. The fact that we’re using this knowledge to develop the next generation of tools for the life sciences, is a testament to the importance of open data and collaborative science.” The potential benefits of this work are huge. Comparing a specific human genome against the human pangenome — instead of the existing human reference genome — gives better insights into its unique composition. This will be important in driving forward personalized medicine. Similar approaches for bacterial and viral genomes will underpin the tracking and management of pathogen outbreaks. This project is funded by the Wellcome Leap Quantum for Bio (Q4Bio) Supported Challenge Program.

The findings reveal a surprisingly selfish side to yeast behavior. A recently discovered phenomenon known as latecomer killing describes how yeast kills its own clones and other nearby microorganisms to survive when starved of glucose. Yeast is not the simple single-celled microorganism we always believed it was, but a competitive killer. When yeast is starved of glucose, it releases a toxin that can kill any other microorganisms that have entered its habitat, even clones of itself. This previously unknown venomous phenomenon adds to our knowledge of unicellular microorganism behavior and the evolution of unicellular to multicellular organisms. It also has potentially valuable uses in the food industry. During the pandemic, bread baking gained popularity as a new pastime, so nowadays you will probably discover a small packet of dried yeast hidden away in many kitchen cabinets. This little living fungus has been an essential component of our diet for thousands of years, allowing us to enjoy fluffy bread, sweet wine, and frothy beer. Yeast was previously believed to be a simple unicellular (single-cell) microorganism, but now researchers at the University of Tokyo have shown it has a murderous survival strategy. There are more than 1,500 known types of yeast. Some are essential for baking and brewing, while others can cause infections that affect human and animal health. Credit: 2022 Rohan Mehra Latecomer Killing: A Surprising Phenomenon “In the critical survival situation of glucose starvation, yeasts release toxins into their habitat which kill other microorganisms while the yeast itself acquires resistance,” explained Assistant Professor Tetsuhiro Hatakeyama from the Graduate School of Arts and Sciences. “We have called this phenomenon latecomer killing. We were even more surprised to find that the toxins produced by yeasts can also kill their nonadapted clones, so they are at risk of killing not only invading microorganisms but also their own offspring. Such seemingly risky and almost suicidal behavior had not previously been found in a single-celled organism or even considered to exist.” Although many bacteria and fungi display cooperative kinds of behavior, this study is the first prominent finding of competitiveness in clonal cells of unicellular organisms. This has significant implications for our knowledge of microorganism ecology, as well as why certain microorganisms grow during fermentation while others do not. To make this discovery, the researchers cultivated clonal cells (derived from the same parental cell) separately under glucose-limited and glucose-rich conditions. When the cells were combined, the growth patterns revealed that yeast cells that had already adapted to glucose starvation could poison latecomers while retaining food resources for themselves. Yeast cells poisoned by toxins made by clonal cells. Dead cells are marked using a dye. Credit: 2022 Oda et. al “Our research reveals a surprisingly selfish side to yeast behavior,” said Hatakeyama. “The phenomenon we discovered is similar to a thought experiment proposed by the ancient Greek philosopher Carneades of Cyrene, called the plank of Carneades: If a sailor escapes from a shipwreck by holding on to a plank that is capable of supporting barely one person, and then pushes away another sailor who comes after him, will he be charged with murder?” Insights Into Evolutionary Strategy and Lineage Selection The researchers suggest that this strategy may help yeast avoid mass starvation of the population, while also aiding selection of toxin-producing offspring that are more likely to continue their lineage. The strategy was observed in several different types of yeast — initially taken from beer, bread, and wine — which could mean that this phenomenon may occur more widely across this diverse species. This discovery could be used to develop useful growth control mechanisms for economically important species of yeast, such as those used in the food industry. Although not included in this study, it may also pave the way to better controlling types of yeast which can negatively affect human and animal health. The team would next like to explore the implications of this discovery for cell evolution. “For the development of multicellular organisms, not only mutual activation of cellular growth but also mutual inhibition of cellular growth or programmed cell death in clonal cells is required,” explained Hatakeyama. “Fungi are known to tend to an evolutionary transition between unicellularity and multicellularity more readily than other organisms, so we would like to unravel the relationship between the latecomer killing and the evolution of multicellular organisms. We hope this research will make a significant contribution to our understanding of ecosystem development and evolutionary transitions.” Reference: “Autotoxin-mediated latecomer killing in yeast communities” by Arisa H. Oda, Miki Tamura, Kunihiko Kaneko, Kunihiro Ohta and Tetsuhiro S. Hatakeyama, 7 November 2022, PLOS Biology. DOI: 10.1371/journal.pbio.3001844 The study was funded by the Osumi Foundation for Basic Sciences, the Sumitomo Foundation, the Grant-in-Aid for Young Scientists, the Grant-in-Aid for Scientific Research on Innovative Areas “Constraints and Directions of Evolution”, the Japan Creative Research Promotion Agency, and the Japan Agency for Medical Research and Development.

This is a visual representation of the simulated Pong environment where neuron activity is reflected in the tiles growing in height. Credit: Kagan et al. / Neuron Live biological neurons show more about how a brain works than AI ever will. Scientists have shown for the first time that 800,000 brain cells living in a dish can perform goal-directed tasks. In this case, they played the simple tennis-like computer game, Pong. The results of the Melbourne-led study are published today (October 12) in the journal Neuron. Now the researchers are going to investigate what happens when their DishBrain is affected by medicines and alcohol. “We have shown we can interact with living biological neurons in such a way that compels them to modify their activity, leading to something that resembles intelligence,” says lead author Dr. Brett Kagan. He is Chief Scientific Officer of biotech start-up Cortical Labs, which is dedicated to building a new generation of biological computer chips. His co-authors are affiliated with Monash University, RMIT University, University College London, and the Canadian Institute for Advanced Research. A microscopy image of neural cells where fluorescent markers show different types of cells. Green marks neurons and axons, purple marks neurons, red marks dendrites, and blue marks all cells. Where multiple markers are present, colors are merged and typically appear as yellow or pink depending on the proportion of markers, credit Cortical Labs. Credit: Cortical Labs “DishBrain offers a simpler approach to test how the brain works and gain insights into debilitating conditions such as epilepsy and dementia,” says Dr. Hon Weng Chong, Chief Executive Officer of Cortical Labs. Understanding Brain Function Through DishBrain Although researchers have been able to mount neurons on multi-electrode arrays and read their activity for some time now, this is the first time that cells have been stimulated in a structured and meaningful way. “In the past, models of the brain have been developed according to how computer scientists think the brain might work,” Kagan says. “That is usually based on our current understanding of information technology, such as silicon computing. “But in truth, we don’t really understand how the brain works.” This video shows the game Pong being controlled by a layer of neurons in a dish. Credit: Kagan et. al / Neuron By constructing a living model brain from basic structures in this way, scientists will be able to experiment using real brain function rather than flawed analogous models such as a computer. For example,  Kagan and his team will next experiment to see what effect alcohol has when introduced to DishBrain. “We’re trying to create a dose-response curve with ethanol – basically get them ‘drunk’ and see if they play the game more poorly, just as when people drink,” says Kagan. That may pave the way for completely new methods of understanding what is happening with the brain. Scanning Electron Microscope image of a neural culture that has been growing for more than six months on a high-density multi-electrode array. A few neural cells grow around the periphery and have developed complicated networks which cover the electrodes in the center. Credit Cortical Labs Potential for Revolutionizing Brain Research and Technology “This new capacity to teach cell cultures to perform a task in which they exhibit sentience – by controlling the paddle to return the ball via sensing – opens up new discovery possibilities which will have far-reaching consequences for technology, health, and society,” says Dr. Adeel Razi. He is the Director of Monash University’s Computational & Systems Neuroscience Laboratory. “We know our brains have the evolutionary advantage of being tuned over hundreds of millions of years for survival. Now, it seems we have in our grasp where we can harness this incredibly powerful and cheap biological intelligence.” Cortical Labs Chief Scientific Officer, Dr. Brett J. Kagan (seated), and Chief Executive Officer, Dr. Hon Weng (standing), conducting cell work on multielectrode arrays in a biosafety hood. Credit: Cortical Labs The findings also raise the possibility of creating an alternative to animal testing when investigating how new drugs or gene therapies respond in these dynamic environments. “We have also shown we can modify the stimulation based on how the cells change their behavior and do that in a closed-loop in real-time,” says Kagan. Brett Kagan, Chief Scientific Officer, Cortical Labs. Credit: Cortical Labs To perform the experiment, the team of scientists gathered mouse cells from embryonic brains as well as some human brain cells derived from stem cells. They grew them on top of microelectrode arrays that could both stimulate them and read their activity. Electrodes on the left or right of one array were fired to tell Dishbrain which side the ball was on, while the distance from the paddle was indicated by the frequency of signals. Feedback from the electrodes taught DishBrain how to return the ball, by making the cells act as if they themselves were the paddle. The Beauty of Interactive Neuron Systems “We’ve never before been able to see how the cells act in a virtual environment,” says Kagan. “We managed to build a closed-loop environment that can read what’s happening in the cells, stimulate them with meaningful information, and then change the cells in an interactive way so they can actually alter each other.” “The beautiful and pioneering aspect of this work rests on equipping the neurons with sensations — the feedback — and crucially the ability to act on their world,” says co-author Professor Karl Friston, a theoretical neuroscientist at UCL, London. “Remarkably, the cultures learned how to make their world more predictable by acting upon it. This is remarkable because you cannot teach this kind of self-organization; simply because — unlike a pet — these mini-brains have no sense of reward and punishment,” he says. Translational Potential: Testing Drugs in Real-Time “The translational potential of this work is truly exciting: it means we don’t have to worry about creating ‘digital twins’ to test therapeutic interventions. We now have, in principle, the ultimate biomimetic ‘sandbox’ in which to test the effects of drugs and genetic variants – a sandbox constituted by exactly the same computing (neuronal) elements found in your brain and mine.” The research also supports the “free energy principle” developed by Professor Friston. “We faced a challenge when we were working out how to instruct the cells to go down a certain path. We don’t have direct access to dopamine systems or anything else we could use to provide specific real-time incentives so we had to go a level deeper to what Professor Friston works with: information entropy – a fundamental level of information about how the system might self-organize to interact with its environment at the physical level. “The free energy principle proposes that cells at this level try to minimize the unpredictability in their environment.” Kagan says one exciting finding was that DishBrain did not behave like silicon-based systems. “When we presented structured information to disembodied neurons, we saw they changed their activity in a way that is very consistent with them actually behaving as a dynamic system,” he says. “For example, the neurons’ ability to change and adapt their activity as a result of experience increases over time, consistent with what we see with the cells’ learning rate.” Chong says he was excited by the discovery, but it was just the beginning. “This is brand new, virgin territory. And we want more people to come on board and collaborate with this, to use the system that we’ve built to further explore this new area of science,” he says. “As one of our collaborators said, it’s not every day that you wake up and you can create a new field of science.” Reference: “In vitro neurons learn and exhibit sentience when embodied in a simulated game-world” by Brett J. Kagan, Andy C. Kitchen, Nhi T. Tran, Forough Habibollahi, Moein Khajehnejad, Bradyn J. Parker, Anjali Bhat, Ben Rollo, Adeel Razi and Karl J. Friston, 12 October 2022, Neuron. DOI: 10.1016/j.neuron.2022.09.001 B.J.K. is an employee of Cortical Labs. B.J.K. and A.C.K. are shareholders of Cortical Labs. B.J.K. and A.C.K. hold an interest in patents related to this publication. F.H. and M.K. received funding from Cortical Labs for work related to this publication.

DVDV1551RTWW78V



China custom product OEM/ODM services 》reducing complexity, increasing product valueBreathable insole ODM development Thailand 》your trusted source for functional product developmentTaiwan insole ODM service provider 》expert-level OEM/ODM to support product innovation

限會員,要發表迴響,請先登入