Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Pillow OEM for wellness brands Thailand
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.High-performance graphene insole OEM Vietnam
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Graphene insole OEM factory China
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Eco-friendly pillow OEM manufacturer China
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Orthopedic pillow OEM solutions China
Forever chemicals, also known as PFAS (Per- and Polyfluoroalkyl Substances), are a group of synthetic chemicals that have been widely used in various industries due to their unique properties, such as resistance to heat, oil, and water. However, PFAS have been found to have a persistent and toxic effect on the environment and human health. Exposure to a mixture of chemicals known as PFAS results in changes in biological processes that are linked to a diverse array of diseases. Researchers from the Keck School of Medicine of USC have discovered that being exposed to a mixture of synthetic chemicals commonly present in the environment affects multiple crucial biological processes in both children and young adults. These processes include the metabolism of fats and amino acids. The disruption of these biological processes increases the likelihood of various diseases, including developmental disorders, cardiovascular disease, metabolic disease, and several forms of cancer. Per- and polyfluoroalkyl substances (PFAS), also referred to as “forever chemicals,” are man-made chemicals used in many consumer and industrial products. These substances are slow to break down and accumulate both in the environment and human tissue, hence the nickname. Although individual PFAS are known to increase the risk of several types of disease, this study, published in the journal Environmental Health Perspectives, is the first to evaluate which biological processes are altered by exposure to a combination of multiple PFAS, which is important because most people carry a mixture of the chemicals in their blood. “Our findings were surprising and have broad implications for policymakers trying to mitigate risk,” said Jesse A. Goodrich, Ph.D., assistant professor of population and public health sciences and lead author of the study. “We found that exposure to a combination of PFAS not only disrupted lipid and amino acid metabolism but also altered thyroid hormone function.” A First-of-Its-Kind Research Project To understand the effects that the mixture of PFAs has in the body, the team used blood samples collected from 312 adolescents who participated in the Study of Latino Adolescents at Risk and 137 children from the Southern California Children’s Health Study. They found that all the children and adolescents had a mixture of several common PFAS in their blood including PFOS, PFHxS, PFHpS, PFOA, and PFNA. More than 98% of the participants also had PFDA in their blood. The scientists also measured thousands of naturally occurring chemicals in blood and, using a biostatistical method they developed, they identified how exposure to multiple different PFAS impacted each of these naturally occurring chemicals. This information helped the researchers determine that PFAS exposure altered the way the body metabolized lipids and amino acids as well as the levels of thyroid hormone, an important determinant of metabolic rates. The researchers focused on children and young adults because they are going through critical stages of development that may make them more susceptible to the negative health effects of PFAS exposure. It is also a time when many serious diseases that manifest in adults begin to take root. The researchers added that these results are consistent with earlier studies that showed exposure to individual PFAS in childhood was associated with dysregulated lipid and fatty acid metabolism, which can increase the risk of metabolic disorders and cardiovascular disease later in life. One finding that stood out, according to Goodrich, was the fact that the PFAS exposure had an effect on thyroid hormone function, which has a critical role in growth and metabolism. Because of this, changes in thyroid hormones play an important role in child development during puberty, which can have important effects on a range of diseases later in life, including diabetes, cardiovascular disease, and cancer. Important Public Health Consideration Another important finding was the fact that exposure to a mixture of PFAS, rather than a single chemical of this type, drove the disruption of these biological processes. This finding was consistent across the two cohorts, even though they had different levels of PFAS exposure. Almost all people in the U.S. have detectable levels of several PFAS, which are in a wide variety of products including waterproof clothing and food packaging, in their blood. An estimated 200 million people in the U.S. have drinking water with PFAS levels that are considerably higher than the levels recommended by the U.S. Environmental Protection Agency in 2022. Some manufacturers have phased out the use of individual PFAS, but the authors of this study conclude that this research shows why it may be more important to regulate PFAS as a class of chemicals. “We are really only beginning to understand the range of effects that these chemicals have on human health,” said Leda Chatzi, MD, Ph.D., professor of population and public health sciences and another of the study’s authors. “While current interventions have focused on phasing out the use of individual PFAS, such as PFOS and PFOA, this research shows why the focus should be on reducing exposure to all PFAS chemicals.” Reference: “Metabolic Signatures of Youth Exposure to Mixtures of Per- and Polyfluoroalkyl Substances: A Multi-Cohort Study” by Jesse A. Goodrich, Douglas I. Walker, Jingxuan He, Xiangping Lin, Brittney O. Baumert, Xin Hu, Tanya L. Alderete, Zhanghua Chen, Damaskini Valvi, Zoe C. Fuentes, Sarah Rock, Hongxu Wang, Kiros Berhane, Frank D. Gilliland, Michael I. Goran, Dean P. Jones, David V. Conti and Leda Chatzi, 22 February 2023, Environmental Health Perspectives. DOI: 10.1289/EHP11372 The study was funded by the National Institute of Environmental Health Sciences.
Scientists are deciphering the nuclear pore complex in incredible detail. Credit: Valerie Altounian Scientists have mapped the nuclear pore complex, revealing its structure and role in disease, paving the way for new research and treatments. Many of us learned the basic cell structure at some point and will recall components like the cell membrane, cytoplasm, mitochondrion, and nucleus. However, the structure of our cells is actually vastly more complicated than you may have thought. In fact, because we have been discovering so much over the years, we now know that cells are far more complex than even expert biologists realized not too long ago. One element of particular complexity is the nuclear pore complex. Surrounding the eukaryotic cell nucleus is a double membrane, the nuclear envelope, which encloses the genetic material of the cell nucleus. Spanning that nuclear envelope is the nuclear pore complex, which though microscopic in size, is incredibly complex molecular machinery comprised of a vast number of different proteins. Whatever you are doing, whether it is driving a car, going for a jog, or even at your laziest, eating chips and watching TV on the couch, there is an entire suite of molecular machinery inside each of your cells hard at work. That machinery, far too small to see with the naked eye or even with many microscopes, creates energy for the cell, manufactures its proteins, makes copies of its DNA, and much more. Among those pieces of machinery, and one of the most complex, is something known as the nuclear pore complex (NPC). The NPC, which is made of more than 1,000 individual proteins, is an incredibly discriminating gatekeeper for the cell’s nucleus, the membrane-bound region inside a cell that holds that cell’s genetic material. Anything going in or out of the nucleus has to pass through the NPC on its way. A molecular model of the outside (cytoplasmic) face of the nuclear pore complex. Reprinted with permission from C.J. Bley et al., Science 376, eabm9129 (2022). Credit: Hoelz Laboratory/Caltech The NPC’s role as a gatekeeper of the nucleus means it is vital for the operations of the cell. Within the nucleus, DNA, the cell’s permanent genetic code, is copied into RNA. That RNA is then carried out of the nucleus so it can be used to manufacture the proteins the cell needs. The NPC ensures the nucleus gets the materials it needs for synthesizing RNA, while also protecting the DNA from the harsh environment outside the nucleus and enabling the RNA to leave the nucleus after it has been made. “It’s a little like an airplane hangar where you can repair 747s, and the door opens to let the 747 come in, but there’s a person standing there who can keep a single marble from getting out while the doors are open,” says Caltech’s André Hoelz, professor of chemistry and biochemistry and a Faculty Scholar of the Howard Hughes Medical Institute. For more than two decades, Hoelz has been studying and deciphering the structure of the NPC in relation to its function. Over the years, he has steadily chipped away at its secrets, unraveling them piece by piece by piece by piece. The implications of this research are potentially huge. Not only is the NPC central to the operations of the cell, it is also involved in many diseases. Mutations in the NPC are responsible for some incurable cancers, for neurodegenerative and autoimmune diseases such as amyotrophic lateral sclerosis (ALS) and acute necrotizing encephalopathy, and for heart conditions including atrial fibrillation and early sudden cardiac death. Additionally, many viruses, including the one responsible for COVID-19, target and shutdown the NPC during the course of their lifecycles. Now, in a pair of papers published in the journal Science, Hoelz and his research team describe two important breakthroughs: the determination of the structure of the outer face of the NPC and the elucidation of the mechanism by which special proteins act like a molecular glue to hold the NPC together. A Very Tiny 3D Jigsaw Puzzle In their paper titled “Architecture of the cytoplasmic face of the nuclear pore,” Hoelz and his research team describe how they mapped the structure of the side of the NPC that faces outward from the nucleus and into the cells’ cytoplasm. To do this, they had to solve the equivalent of a very tiny 3-D jigsaw puzzle, using imaging techniques such as electron microscopy and X-ray crystallography on each puzzle piece. Stefan Petrovic, a graduate student in biochemistry and molecular biophysics and one of the co-first authors of the papers, says the process began with Escherichia coli bacteria (a strain of bacteria commonly used in labs) that were genetically engineered to produce the proteins that make up the human NPC. “If you walk into the lab, you can see this giant wall of flasks in which cultures are growing,” Petrovic says. “We express each individual protein in E. coli cells, break those cells open, and chemically purify each protein component.” Once that purification—which can require as much as 1,500 liters of bacterial culture to get enough material for a single experiment—was complete, the research team began to painstakingly test how the pieces of the NPC fit together. George Mobbs, a senior postdoctoral scholar research associate in chemistry and another co- first author of the paper, says the assembly happened in a “stepwise” fashion; rather than pouring all the proteins together into a test tube at the same time, the researchers tested pairs of proteins to see which ones would fit together, like two puzzle pieces. If a pair was found that fit together, the researchers would then test the two now-combined proteins against a third protein until they found one that fit with that pair, and then the resulting three-piece structure was tested against other proteins, and so on. Working their way through the proteins in this way eventually produced the final result of their paper: a 16-protein wedge that is repeated eight times, like slices of a pizza, to form the face of the NPC. “We reported the first complete structure of the entire cytoplasmic face of the human NPC, along with rigorous validation, instead of reporting a series of incremental advances of fragments or portions based on partial, incomplete, or low-resolution observation,” says Si Nie, postdoctoral scholar research associate in chemistry and also a co-first author of the paper. “We decided to patiently wait until we had acquired all necessary data, reporting a humungous amount of new information.” Their work complemented research conducted by Martin Beck of the Max Planck Institute of Biophysics in Frankfurt, Germany, whose team used cryo-electron tomography to generate a map that provided the contours of a puzzle into which the researchers had to place the pieces. To accelerate the completion of the puzzle of the human NPC structure, Hoelz and Beck exchanged data more than two years ago and then independently built structures of the entire NPC. “The substantially improved Beck map showed much more clearly where each piece of the NPC—for which we determined the atomic structures—had to be placed, akin to a wooden frame that defines the edge of a puzzle,” Hoelz says. The experimentally determined structures of the NPC pieces from the Hoelz group served to validate the modeling by the Beck group. “We placed the structures into the map independently, using different approaches, but the final results completely agreed. It was very satisfying to see that,” Petrovic says. “We built a framework on which a lot of experiments can now be done,” says Christopher Bley, a senior postdoctoral scholar research associate in chemistry and also co-first author. “We have this composite structure now, and it enables and informs future experiments on NPC function, or even diseases. There are a lot of mutations in the NPC that are associated with terrible diseases, and knowing where they are in the structure and how they come together can help design the next set of experiments to try and answer the questions of what these mutations are doing.” “This Elegant Arrangement of Spaghetti Noodles” In the other paper, titled “Architecture of the linker-scaffold in the nuclear pore,” the research team describes how it determined the entire structure of what is known as the NPC’s linker-scaffold—the collection of proteins that help hold the NPC together while also providing it with the flexibility it needs to open and close and to adjust itself to fit the molecules that pass through. Hoelz likens the NPC to something built out of Lego bricks that fit together without locking together and are instead lashed together by rubber bands that keep them mostly in place while still allowing them to move around a bit. The nuclear pore complex (NPC) is able to expand and contract to adapt to the needs of the cell. Reprinted with permission from S. Petrovic et al., Science 376, eabm9798 (2022). Credit: Hoelz Laboratory/Caltech “I call these unstructured glue pieces the ‘dark matter of the pore,'” Hoelz says. “This elegant arrangement of spaghetti noodles holds everything together.” The process for characterizing the structure of the linker-scaffold was much the same as the process used to characterize the other parts of the NPC. The team manufactured and purified large amounts of the many types linker and scaffold proteins, used a variety of biochemical experiments and imaging techniques to examine individual interactions, and tested them piece by piece to see how they fit together in the intact NPC. To check their work, they introduced mutations into the genes that code for each of those linker proteins in a living cell. Since they knew how those mutations would change the chemical properties and shape of a specific linker protein, making it defective, they could predict what would happen to the structure of the cell’s NPCs when those defective proteins were introduced. If the cell’s NPCs were functionally and structurally defective in the way they expected, they knew they had the correct arrangement of the linker proteins. “A cell is much more complicated than the simple system we create in a test tube, so it is necessary to verify that results obtained from in vitro experiments hold up in vivo,” Petrovic says. The assembly of the NPC’s outer face also helped solve a longtime mystery about the nuclear envelope, the double membrane system that surrounds the nucleus. Like the membrane of the cell within which the nucleus resides, the nuclear membrane is not perfectly smooth. Rather, it is studded with molecules called integral membrane proteins (IMPs) that serve in a variety of roles, including acting as receptors and helping to catalyze biochemical reactions. Although IMPs can be found on both the inner and outer sides of the nuclear envelope, it had been unclear how they actually traveled from one side to the other. Indeed, because IMPs are stuck inside of the membrane, they cannot just glide through the central transport channel of the NPC as do free-floating molecules. Once Hoelz’s team understood the structure of the NPC’s linker-scaffold, they realized that it allows for the formation of little “gutters” around its outside edge that allow the IMPs to slip past the NPC from one side of the nuclear envelope to the other while always staying embedded in the membrane itself. “It explains a lot of things that have been enigmatic in the field. I am very happy to see that the central transport channel indeed has the ability to dilate and form lateral gates for these IMPs, as we had originally proposed more than a decade ago,” Hoelz says. Taken together, the findings of the two papers represent a leap forward in scientists’ understanding of how the human NPC is built and how it works. The team’s discoveries open the door for much more research. “Having determined its structure, we can now focus on working out the molecular bases for the NPC’s functions, such as how mRNA gets exported and the underlying causes for the many NPC-associated diseases with the goal of developing novel therapies,” Hoelz says. The papers describing the work appear in the June 10 issue of the journal Science. References: “Architecture of the cytoplasmic face of the nuclear pore” by Christopher J. Bley, Si Nie, George W. Mobbs, Stefan Petrovic, Anna T. Gres, Xiaoyu Liu, Somnath Mukherjee, Sho Harvey, Ferdinand M. Huber, Daniel H. Lin, Bonnie Brown, Aaron W. Tang, Emily J. Rundlet, Ana R. Correia, Shane Chen, Saroj G. Regmi, Taylor A. Stevens, Claudia A. Jette, Mary Dasso, Alina Patke, Alexander F. Palazzo, Anthony A. Kossiakoff and André Hoelz, 10 June 2022, Science. DOI: 10.1126/science.abm9129 “Architecture of the linker-scaffold in the nuclear pore” by Stefan Petrovic, Dipanjan Samanta, Thibaud Perriches, Christopher J. Bley, Karsten Thierbach, Bonnie Brown, Si Nie, George W. Mobbs, Taylor A. Stevens, Xiaoyu Liu, Giovani Pinton Tomaleri, Lucas Schaus and André Hoelz, 10 June 2022, Science. DOI: 10.1126/science.abm9798 Additional co-authors of the paper, “Architecture of the cytoplasmic face of the nuclear pore,” are Anna T. Gres; now of Worldwide Clinical Trials; Xiaoyu Liu, now of UCLA; Sho Harvey, a former grad student in Hoelz’s lab; Ferdinand M. Huber, now of Odyssey Therapeutics; Daniel H. Lin, now of the Whitehead Institute for Biomedical Research; Bonnie Brown, a former research technician in Hoelz’s lab; Aaron W. Tang, a former research technician in Hoelz’s lab; Emily J. Rundlet, now of St. Jude Children’s Research Hospital and Weill Cornell Medicine; Ana R. Correia, now of Amgen; Taylor A. Stevens, graduate student in biochemistry and molecular biophysics; Claudia A. Jette, graduate student in biochemistry and molecular biophysics; Alina Patke, research assistant professor of biology; Somnath Mukherjee and Anthony A. Kossiakoff of the University of Chicago; Shane Chen, Saroj G. Regmi, and Mary Dasso of the National Institute of Child Health and Human Development; and Alexander F. Palazzo of the University of Toronto. Additional co-authors of the paper, “Architecture of the linker-scaffold in the nuclear pore,” are Dipanjan Samanta, postdoctoral scholar fellowship trainee in chemical engineering; Thibaud Perriches, now of Care Partners; Christopher J. Bley; Karsten Thierbach; now of Odyssey Therapeutics; Bonnie Brown, Si Nie, George W. Mobbs, Taylor A. Stevens, Xiaoyu Liu, now of UCLA; Giovani Pinton Tomaleri, graduate student in biochemistry and molecular biophysics; and Lucas Schaus, graduate student in biochemistry and molecular biophysics. Funding for the research was provided by the National Institutes of Health, the Howard Hughes Medical Institute, and the Heritage Medical Research Institute.
Exercise can directly improve brain health by promoting hippocampal neuronal development, with astrocytes playing a key role in mediating the effects. This research could lead to exercise-based treatments for cognitive disorders such as Alzheimer’s disease. Studying chemical signals from contracting muscle cells points to ways of improving brain health with exercise. Beckman researchers studied how chemical signals from contracting muscles promote healthy brains. Their findings reveal how these signals help grow and regulate new brain networks while also pointing toward ways of improving brain health through exercise. Physical activity is frequently cited as a means of improving physical and mental health. Researchers at the Beckman Institute for Advanced Science and Technology have shown that it may also improve brain health more directly. They studied how the chemical signals released by exercising muscles promote neuronal development in the brain. Their work was published in the journal Neuroscience. When muscles contract during exercise, like a bicep working to lift a heavy weight, they release a variety of compounds into the bloodstream. These compounds can travel to different parts of the body, including the brain. The researchers were particularly interested in how exercise could benefit a particular part of the brain called the hippocampus. “The hippocampus is a crucial area for learning and memory, and therefore cognitive health,” said Ki Yun Lee, a Ph.D. student in mechanical science and engineering at the University of Illinois Urbana-Champaign and the study’s lead author. Understanding how exercise benefits the hippocampus could therefore lead to exercise-based treatments for a variety of conditions including Alzheimer’s disease. Hippocampal neurons (yellow) surrounded by astrocytes (green) in a cell culture from the study. Image provided by the authors. Credit: Image provided by the study authors: Taher Saif, Justin Rhodes, and Ki Yun Lee Hippocampal Growth Through Chemical Signals To isolate the chemicals released by contracting muscles and test them on hippocampal neurons, the researchers collected small muscle cell samples from mice and grew them in cell culture dishes in the lab. When the muscle cells matured, they began to contract on their own, releasing their chemical signals into the cell culture. The research team added the culture, which now contained the chemical signals from the mature muscle cells, to another culture containing hippocampal neurons and other support cells known as astrocytes. Using several measures, including immunofluorescent and calcium imaging to track cell growth and multi-electrode arrays to record neuronal electrical activity, they examined how exposure to these chemical signals affected the hippocampal cells. The results were striking. Exposure to the chemical signals from contracting muscle cells caused hippocampal neurons to generate larger and more frequent electrical signals — a sign of robust growth and health. Within a few days, the neurons started firing these electrical signals more synchronously, suggesting that the neurons were forming a more mature network together and mimicking the organization of neurons in the brain. Astrocytes are a type of star-shaped glial cell in the brain and spinal cord, which are essential for the proper functioning of the nervous system. They play a myriad of crucial roles including maintaining the blood-brain barrier, providing nutrients to nervous tissue, and regulating the repair and scarring process of the brain and spinal cord following traumatic injuries. Astrocytes also facilitate neurotransmission, the process of signal transmission between nerve cells. However, the researchers still had questions about how these chemical signals led to growth and development of hippocampal neurons. To uncover more of the pathway linking exercise to better brain health, they next focused on the role of astrocytes in mediating this relationship. Astrocytes as Mediators of Brain Health “Astrocytes are the first responders in the brain before the compounds from muscles reach the neurons,” Lee said. Perhaps, then, they played a role in helping neurons respond to these signals. The researchers found that removing astrocytes from the cell cultures caused the neurons to fire even more electrical signals, suggesting that without the astrocytes, the neurons continued to grow — perhaps to a point where they might become unmanageable. “Astrocytes play a critical role in mediating the effects of exercise,” Lee said. “By regulating neuronal activity and preventing hyperexcitability of neurons, astrocytes contribute to the balance necessary for optimal brain function.” Understanding the chemical pathway between muscle contraction and the growth and regulation of hippocampal neurons is just the first step in understanding how exercise helps improve brain health. “Ultimately, our research may contribute to the development of more effective exercise regimens for cognitive disorders such as Alzheimer’s disease,” Lee said. Reference: “Astrocyte-mediated Transduction of Muscle Fiber Contractions Synchronizes Hippocampal Neuronal Network Development” by Ki Yun Lee, Justin S. Rhodes and M. Taher A. Saif, 2 February 2023, Neuroscience. DOI: 10.1016/j.neuroscience.2023.01.028 In addition to Lee, the team also included Beckman faculty members Justin Rhodes, a professor of psychology; and Taher Saif, a professor of mechanical science and engineering and bioengineering. Funding: NIH/National Institutes of Health, National Science Foundation
DVDV1551RTWW78V
Orthopedic pillow OEM development factory Taiwan 》from raw material to finished product,we do it allMemory foam pillow OEM factory Thailand 》committed to helping you create value through custom manufacturingPillow OEM factory for wellness brands 》where modern manufacturing meets timeless quality
下一則: Graphene cushion OEM factory in Vietnam 》trusted b
限會員,要發表迴響,請先登入

