Contents ...
udn網路城邦
Taiwan graphene material ODM solution 》perfect for
2025/04/23 14:25
瀏覽39
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Indonesia custom insole OEM supplier

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Customized sports insole ODM Thailand

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Indonesia neck support pillow OEM

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Innovative pillow ODM solution in Indonesia

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Taiwan flexible graphene product manufacturing

Microproteins and small proteins called smORFs are potentially a rich source of uncharacterized regulators of metabolism. Credit: Salk Institute and Cell Metabolism Scientists uncovered over 3,800 tiny proteins that play a role in metabolism and discovered that one microprotein, Gm8773, boosts feeding activity in mice – offering a potential solution to help people with diseases like cancer gain weight. In the US, obesity and diabetes are widespread diseases. Microproteins, small proteins, have been previously overlooked in research but recent studies suggest they play a crucial role in metabolism. Researchers at the Salk Institute have found that both white and brown fat contain numerous unknown microproteins and one of these microproteins, Gm8773, has the ability to increase appetite in mice. The findings, recently published in the journal Cell Metabolism, could result in a therapeutic to increase weight in specific diseases such as during cancer chemotherapy. The team’s discovery of these microproteins also provides valuable resources for the scientific community to further study microproteins. From left: Alan Saghatelian and Thomas Martinez. Credit: Salk Institute and Steve Zylius from UC Irvine “It is vital to better understand the processes that regulate obesity and metabolic health in order to provide improved therapies for the future,” says Salk Professor Alan Saghatelian, co-corresponding author of the study and holder of the Dr. Frederik Paulsen Chair. “Having this list of microproteins will aid the field of metabolism in identifying new players in a variety of metabolic diseases. And we’ve demonstrated one biologically active microprotein that promotes feeding, as well as other microproteins that are involved in fat metabolism.” Distinguishing Between White and Brown Fat Fat tissue secretes many different proteins to regulate feeding, energy balance, and the production of heat. White fat, known as “bad fat,” is often found just beneath the skin and in the abdominal region. This type of fat acts as an energy storage depot and is related to obesity and other diseases caused by excess weight. In contrast, brown fat or “good fat” is located around the shoulders and along the spinal cord. Brown fat is associated with proper nutrition, exercise, and health. In this study, the scientists used innovative genomics technologies to examine the brown, white, and beige fat (another type of fat with features similar to both white and brown fat) in mouse cells. They discovered 3,877 genes that produce microproteins in both white and brown fat. Additionally, they explored the levels of these genes in mice fed a high-fat Western diet, and linked hundreds of microproteins to changes in fat tissue metabolism. Overall, the analysis highlights many likely metabolically relevant microproteins for the first time. “We’ve provided a roadmap on how to best use our data to link and eventually characterize the roles of microproteins in fundamental metabolic pathways,” says first author Thomas Martinez, a former postdoctoral fellow in Saghatelian’s lab who is now an assistant professor at UC Irvine. Gm8773: A Microprotein That Regulates Appetite The team also focused in on a microprotein called Gm8773, located in the feeding center of the brain, called the hypothalamus. The location of the microprotein in the brain suggested it may play a role in appetite. Indeed, when the scientists administered Gm8773 to obese mice, the mice consumed more food. There is also a human gene similar to Gm8773 called FAM237B, and this gene could act similarly in humans to promote eating. According to the researchers, this microprotein could eventually be developed into a therapeutic to promote weight gain in those experiencing extreme weight loss. “The new microproteins presented in our study are exciting discoveries for the field of metabolism and for the study of fat biology,” says co-corresponding author Chris Barnes, formerly of Novo Nordisk Research Center Seattle, Inc., now head of proteomics at Velia Therapeutics. “We hope that this resource will be used to generate numerous new experimental hypotheses for the scientific community to test in their own labs and that this work leads to the identification of novel mechanisms in biology.” In the future, the scientists plan to develop tools to investigate the roles of Gm8773 and FAM237B with the goal of eventually developing a therapeutic that can increase appetite in humans. Reference: “Profiling mouse brown and white adipocytes to identify metabolically relevant small ORFs and functional microproteins” by Thomas F. Martinez, Sally Lyons-Abbott, Angie L. Bookout, Eduardo V. De Souza, Cynthia Donaldson, Joan M. Vaughan, Calvin Lau, Ariel Abramov, Arian F. Baquero, Karalee Baquero, Dave Friedrich, Justin Huard, Ray Davis, Bong Kim, Ty Koch, Aaron J. Mercer, Ayesha Misquith, Sara A. Murray, Sakara Perry, Lindsay K. Pino and Christopher A. Barnes, 3 January 2023, Cell Metabolism. DOI: 10.1016/j.cmet.2022.12.004 The study was funded by the National Institutes of Health, Frederick Paulsen and the Ferring Foundation, a sponsored research agreement with Novo Nordisk Research Center Seattle, Inc., the National Institute of Science and Technology on Tuberculosis, Brazil, the National Council for Scientific and Technological Development of Brazil, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil.

New research found that imbalances in RNA communication, both within and from outside the organism, can shorten the lifespan of Caenorhabditis elegans, offering new insights into the aging process and genetic regulation. Research on the roundworm species C. elegans has demonstrated that disruptions in the transfer of RNA between cells across various tissues can lead to a shortened lifespan. Cells in various tissues interact by sharing RNA molecules. A study conducted by scientists from the State University of Campinas (UNICAMP) in Brazil, using the roundworm species Caenorhabditis elegans, discovered that disruptions in this method of communication can lead to a reduced lifespan for the organism. The study was recently published in the journal Gene. The findings contribute to a better understanding of the aging process and associated diseases. “Previous research showed that some types of RNA can be transferred from one cell to another, mediating intertissue communication, of the kind that occurs with proteins and metabolites, for example. This is considered a mechanism for signaling between organs or neighboring cells. It’s part [of the physiopathology] of several diseases and of the organism’s normal functioning,” said Marcelo Mori, corresponding author of the article and a professor at the Institute of Biology (IB-UNICAMP). “What wasn’t clear and we’ve now succeeded in proving is that changes in the pattern of this ‘conversation’ between RNA molecules can affect aging.” The study was conducted at UNICAMP’s Obesity and Comorbidities Research Center (OCRC), one of the Research, Innovation, and Dissemination Centers (RIDCs) funded by FAPESP. It was also funded via a project for which Mori is the principal investigator. “This communication mechanism has to be well adjusted to give the organism an adequate lifespan. In the study, we found that if any tissue happens to increase its capacity to absorb some types of RNA from the extracellular medium, this ends up having an impact on the organism’s lifespan,” Mori said. The researchers demonstrated that the reduction in lifespan was due not only to the disruption of RNA-based communication between tissues in the same organism, he added, but also to an increase in the capacity for RNA uptake from the environment – bacteria in microbiota, for example. As they explain in the article, “Our data support the notion that systemic RNA signaling must be tightly regulated, and unbalancing that process provokes a reduction in lifespan. We termed this phenomenon Intercellular/Extracellular Systemic RNA imbalance (InExS).” Breaking the rules Mori explained that the decision to research the intercellular RNA transport mechanism was inspired by the discovery of RNA interference, for which American scientists Andrew Fire and Craig Mello won the 2006 Nobel Prize in Physiology and Medicine. They injected double-stranded RNA into C. elegans to “silence” genes with great precision. “They found that the silencing mechanism affected genes in other tissues as well as the tissue involved and that it was transmitted to following generations,” he said. The discovery of RNA interference elucidated the mechanisms underlying RNA transfer between cells in an organism and between the organism and the environment. It also relativized a central dogma of molecular biology. Until then, the information embodied by the genetic code was believed to flow only from DNA to RNA, and from there to proteins, but the work of Fire and Craig revealed that double-stranded RNA can block this flow. Messenger RNA is destroyed by RNA interference, which silences specific genes without altering the DNA sequence, showing that RNA can also perform a regulatory function in the genome. Although the human genome comprises some 30,000 genes, only a few are used in each cell to synthesize proteins. A large proportion play a regulatory role, influencing the expression of other genes. Balance is all “We wanted to understand how this process could interfere with important physiological functions linked to aging. In C. elegans, RNA transfer between cells involves what are known as systemic RNA interference defective (SID) genes [responsible for different stages in RNA absorption and export]. We observed that a gene expression pattern associated with this pathway in specific tissues changed during aging. The messenger RNA that encodes the protein SID-1 [fundamental to cellular uptake of RNA], for example, increased in some tissues and decreased in others,” Mori said. To find out more about the role of RNA in intertissue signaling, the researchers conducted experiments in which they manipulated the expression of the protein SID-1 in specific tissues of C. elegans, such as neuronal, intestinal, and muscle cells, in order to change its function. “We found mutants without the SID-1 function to be as healthy as wild-type worms, whereas overexpression of SID-1 in the gut, muscles, or neurons shortened the lifespan of the worms concerned. We also found that a lifespan reduction correlated with overexpression of other proteins in the RNA transport pathway, such as SID-2 and SID-5,” he said. The dysregulation may reside in the distribution of RNA to tissue. “To dysregulate RNA distribution in the worms, we increased SID-1 expression in specific tissues [gut, muscles, and neurons] and found that channeling it to a specific organ led to a lifespan reduction,” he said. “We also showed that this imbalance in RNA transfer led to loss of function in the pathway that produces microRNAs [small pieces of non-coding RNA with a regulatory function]. It’s as if the larger number of RNAs transported to these tissues created a kind of competition in which the production of microRNAs was the loser. Previous research had already shown that loss of function in microRNA production led to a reduction of lifespan.” The UNICAMP group also investigated exogenous RNA transfer (between the outside environment and the organism). As in the previous experiments, a reduction of lifespan correlated with overexpression of SID-2, which mediates RNA uptake from the gut, and with excessive RNA production by bacteria on which the worms feed and which end up in its gut microbiota. “We believe the worms may use exogenous RNA to monitor microorganisms in the environment, but negative effects may ensue when excessive amounts are absorbed by their tissue,” Mori said. “When we forced bacteria in the laboratory to express more double-stranded RNA, the worms’ lifespan decreased. Excessive RNA transfer interferes with homeostasis and endogenous RNA production, accelerating the aging process.” Reference: “Tissue-specific overexpression of systemic RNA interference components limits lifespan in C. elegans” by Henrique Camara, Mehmet Dinçer Inan, Carlos A. Vergani-Junior, Silas Pinto, Thiago L. Knittel, Willian G. Salgueiro, Guilherme Tonon-da-Silva, Juliana Ramirez, Diogo de Moraes, Deisi L. Braga, Evandro A. De-Souza and Marcelo A. Mori, 18 November 2023, Gene. DOI: 10.1016/j.gene.2023.148014 The study was funded by the São Paulo Research Foundation.

A whole worm from the muscle transgenic line where the muscle cells are glowing green. Credit: Lorenzo Ricci Harvard scientists take the study of regeneration to the next level by making three-banded panther worms transgenic. Cut off the head of a three-banded panther worm and another will take its place — mouth, brain, and all. Cut off its tail and it will grow another. Cut the worm into three separate pieces and within eight weeks there’ll be three fully formed worms. Cut it in … well, you get a picture… Put simply: Three-banded panther worms are one of the greatest of all time when it comes to whole-body regeneration. It’s why scientists started studying this Tic Tac-sized worm in order to learn how it pulls off this amazing feat. Now, a team of researchers is taking the study of these worms to the next level by making them glow in the dark. The work is described in a new paper in Developmental Cell and is led by Mansi Srivastava, a professor of organismic and evolutionary biology at Harvard who first collected these worms in 2010 to use as a model organism. Now, worms that glow in the dark with UV light may sound gimmicky, but the researchers of the study explain it’s far from it. The scientific way to say this is that the worms are now transgenic. Transgenesis is when scientists introduce something into the genome of an organism that is not normally part of that genome. “It’s a tool that biologists use to study how cells or tissues work within the body of an animal,” Srivastava said. The glow-in-the-dark factor comes from the introduction of a gene that, when it becomes a protein, gives off certain fluorescent glows. These fluorescent proteins either glow green or red and can lead to glowing muscle cells or glowing skin cells, for example. What this glow-up then allows is an ability to visualize with much better detail what the cells look like, where they are in the animal, and how they interact with each other. Researchers are also able to add or takeaway specific information to the genome of the worm. This level of precision — when it comes to both visual resolution of the cells and ability to add to the genome or even tweak it how they want — is what makes transgenesis particularly powerful. It allows the researchers to study the specific mechanism of any process in an organism. In the case of three-banded panther worms, a marine animal scientifically known as an acoel worm named Hofstenia miamia, researchers can do very precise manipulations, such as switching off certain genes. This could likely force the worm into some mistakes when it comes to regeneration, like growing a tail instead of a head or two heads instead of one and in the wrong place. This can ultimately help scientists truly narrow down what genes are required for the worm to carry out its usually perfect whole-body regeneration. Now, with the ability to make transgenic worms, the researchers say they are most excited to study a population of stem cells critical to regeneration. The cells are called neoblasts and are believed to be pluripotent, meaning they can produce any other cell type in the animal, such as neurons, skin cells, muscle cells, or gut cells. “We don’t know how any one of these cells actually behave in the animal during regeneration,” Srivastava said. “Having the transgenic worms will allow us to watch the cells in the context of the animal as it regenerates.” Already, transgenesis in these worms has allowed the scientists to gain some novel biological insights into how the muscle fibers in the worm connect to each other and to other cells, such as those in the skin and the gut. The researchers saw muscle cells have extensions that interlock in tight columns and keep a closely-knit grid that gives the worm structure and support, almost like a skeleton. The researchers are interested in knowing next whether the muscles are doing more than just holding things together, but are also storing and communicating information on what needs to be regenerated. Making a transgenic worm line takes about eight weeks and the Srivastava lab has the steps down packed. They inject modified DNA into embryos that have just been fertilized. That DNA and its modifications then get incorporated into the genome of the cells as they divide. When that worm grows it will be glowing and that glow will be passed along to its children and their children. Srivastava has been studying these worms for a decade since she collected 120 of them in Bermuda when she was a postdoctoral researcher at the Whitehead Institute. In 2015, she joined the Harvard Department of Organismic and Evolutionary Biology, and launched a research program focused on studying regeneration and stem cells in panther worms.  In a 2019 study, Srivastava and her colleagues uncovered a number of DNA switches that appear to control genes for whole-body regeneration in the worms. Studying the worms for so long Srivastava and her team have grown quite attached to them, their striped patterns, and their intriguing behavior – from how they mate to being quite voracious predators, even cannibals on occasion. For instance, if they haven’t been fed in a while and there’s a few in a tank together they will take bites out of each other. Regeneration really comes in handy then, but if there’s a much bigger worm in there, some have been known to swallow smaller worms whole. All that considered: “They’re absolutely charming,” Srivastava said. “They’re beautiful organisms.” Reference: “Transgenesis in the acoel worm Hofstenia miamia” by Lorenzo Ricci and Mansi Srivastava, 8 November 2021, Developmental Cell. DOI: 10.1016/j.devcel.2021.10.012

DVDV1551RTWW78V



Indonesia graphene material ODM solution 》helping brands deliver comfort and performanceIndonesia anti-odor insole OEM service 》designed for quality-conscious brands who care about user experienceInnovative insole ODM solutions in Taiwan 》delivering consistent quality from sample to mass production

限會員,要發表迴響,請先登入