Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Thailand insole OEM manufacturer
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Taiwan pillow OEM manufacturer
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Indonesia pillow ODM development service
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Innovative pillow ODM solution in Vietnam
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Customized sports insole ODM Vietnam
A new study uncovers that a growth factor, epiregulin, significantly contributes to the expansion of the human neocortex, enhancing our comprehension of what makes humans unique in cognitive functions. What makes us human? According to neurobiologists, it is our neocortex. This outer layer of the brain is rich in neurons and lets us do abstract thinking, create art, and speak complex languages. An international team led by Dr. Mareike Albert at the Center for Regenerative Therapies Dresden (CRTD) of TUD Dresden University of Technology has identified a new factor that might have contributed to neocortex expansion in humans. The results were published in the EMBO Journal. The neocortex is the characteristic folded outer layer of the brain that resembles a walnut. It is responsible for higher cognitive functions such as abstract thinking, art, and language. “The neocortex is the most recently evolved part of the brain,” says Dr. Mareike Albert, research group leader at the CRTD. “All mammals have a neocortex, but it varies in size and complexity. Human and primate neocortices have folds while, for example, mice have a completely smooth neocortex, without any creases.” The folds characteristic of the human brain increase the surface area of the neocortex. The human neocortex has a greater number of neurons that support complex cognitive functions. The molecular mechanisms driving neocortex evolution are still largely unknown. “Which genes are responsible for inter-species differences in neocortex size? What factors have contributed to brain expansion in humans? Answering these questions is crucial to understanding human brain development and potentially addressing mental health disorders,” explains Dr. Albert. The Power of Brain Organoids To search for factors influencing brain expansion, the Albert group compared the developing brains of mice and humans. “Stem cells in mice don’t divide as much and don’t produce as many neurons compared to primates. Humans, on the other hand, have a large number of stem cells in the developing brain. This highly expanded pool of stem cells underlies the increase in the number of neurons and brain size,” explains Dr. Albert. A microscopy image of a human brain organoid. Credit: Janine Hoffmann The team found a factor that is present in humans but not in mice. Using 3D cell culture technology, the group tested if the newly identified factor could influence the expansion of the neocortex. “Thanks to the research awarded with the Nobel prize in 2012, it is possible to turn any cell into a stem cell. Such a stem cell can then be transformed into a three-dimensional tissue that resembles an organ, e.g., a brain. Human stem cells make it possible to study development and diseases directly in human tissues,” explains Dr. Albert. These 3D brain cultures, or brain organoids, may not resemble brains to an untrained eye, but they mimic the cellular complexity of developing brains. “Most of the cell types of the developing brain are present. They interact, signal, and are similarly arranged as in an actual human brain,” says Dr. Albert. Using 3D brain organoids, the group was able to show that a growth factor, known as epiregulin, indeed promotes the division and expansion of stem cells in the developing brain. All About the Amount “Knowing that epiregulin drives expansion of human neocortical stem cells, we looked back at the gene that codes for epiregulin and tried to trace it through the evolutionary tree,” says study lead author Paula Cubillos, a doctoral candidate at the CRTD. The gene is not unique to humans, but also present in other primates and even in mice. “Epiregulin is not produced in the developing mouse brain, however, because the gene is permanently shut off and not being used. We were intrigued to understand whether there are any differences in how epiregulin works in humans and other primates,” explains Paula Cubillos. The researchers turned again to the 3D culture technology. Using gorilla stem cells, the researchers generated gorilla brain organoids. “Gorillas are endangered species. We know very little about their brain development. Organoids made from stem cells offer a way to study their brain development without interacting with the species at all,” says Dr. Albert. Comparing the effect of epiregulin in human and gorilla brain organoids, the team found that adding epiregulin to gorilla brain organoids can further promote the expansion of stem cells. However, adding even more epiregulin to human brain organoids did not have the same effect. This might be because the human neocortex has already expanded to a very large extent. “Unlike previously identified factors, epiregulin as such seems not to be unique to humans. Instead, the amount of the growth factor seems to be the crucial regulator for the inter-species differences,” concludes Dr. Albert. This study not only advances our understanding of human uniqueness but also highlights the importance of new technologies that offer ethical and non-invasive complements to animal research. Reference: “The growth factor EPIREGULIN promotes basal progenitor cell proliferation in the developing neocortex” by Paula Cubillos, Nora Ditzer, Annika Kolodziejczyk, Gustav Schwenk, Janine Hoffmann, Theresa M Schütze, Razvan P Derihaci, Cahit Birdir, Johannes EM Köllner, Andreas Petzold, Mihail Sarov, Ulrich Martin, Katherine R Long, Pauline Wimberger and Mareike Albert, 21 March 2024, The EMBO Journal. DOI: 10.1038/s44318-024-00068-7 The study was performed in collaboration with King’s College London, the Medical Faculty Carl Gustav Carus of TU Dresden, the Max Planck Institute of Molecular Cell Biology and Genetics, and Hannover Medical School.
This image shows a whitefly on a leaf. Credit: Jixing Xia and Zhaojiang Guo A plant gene stolen by whiteflies enables them to resist toxins. Scientists engineered tomatoes to silence this gene, killing the pests without affecting other species. Millions of years ago, aphid-like insects called whiteflies incorporated a portion of DNA from plants into their genome. A Chinese research team, publishing today (March 25, 2021) in the journal Cell, reveals that whiteflies use this stolen gene to degrade common toxins plants use to defend themselves against insects, allowing the whitefly to feed on the plants safely. “This seems to be the first recorded example of the horizontal gene transfer of a functional gene from a plant into an insect,” says co-author Ted Turlings, a chemical ecologist and entomologist at the University of Neuchâtel, in Switzerland. “You cannot find this gene, BtPMaT1, which neutralizes toxic compounds produced by the plant, in any other insect species.” Scientists believe that plants probably use BtPMaT1 within their own cells to store their noxious compounds in a harmless form, so the plant doesn’t poison itself. The team, led by Youjun Zhang from the Institute of Vegetables and Flowers at the Chinese Academy of Agricultural Sciences, used a combination of genetic and phylogenetic analyses, to reveal that roughly 35 million years ago, whiteflies stole this defense gene, granting the insect the ability to detoxify these compounds for themselves. Viruses May Have Helped Whiteflies Steal the Gene “We think a virus within the plant may have taken up this BtPMaT1 gene and, after ingestion by a whitefly, the virus then must have done something inside the insect whereby that gene was integrated into the whiteflies genome,” says Turlings. “Of course, this is an extremely unlikely event, but if you think about millions of years and billions of individual insects, viruses, and plants across time, once in a while this could happen, and if the acquired gene is a benefit to the insects, then it will be evolutionarily favored and may spread.” This image shows a whitefly feeding on a leaf. Credit: Jixing Xia and Zhaojiang Guo Whiteflies have become a major agricultural pest worldwide, able to attack at least 600 different species of plants worldwide. “One of the questions we’ve been asking ourselves is how these insects acquired these incredible adaptations to circumvent plant defenses, and with this discovery, we have revealed at least one reason as to why,” Turlings says. RNA Strategy Turns Whiteflies’ Weapon Against Them Using this knowledge, Turlings’ Chinese colleagues created a strategy to undo the whiteflies’ stolen superpower. They developed a small RNA molecule that interferes with the whiteflies’ BtPMaT1 gene, making the whiteflies susceptible to the plant’s toxic compounds. “The most exciting step of this design was when our colleagues genetically manipulated tomato plants to start producing this RNA molecule,” says Turlings. “Once the whiteflies fed on the tomatoes and ingested the plant-produced RNA, their BtPMaT1 gene was silenced, causing 100% mortality of the insect, but the genetic manipulation had no impact on the survival of other insects that were tested.” With focused efforts to produce genetically modified crops that are able to silence the whitefly gene, this could function as a targeted strategy for pest control to combat agricultural devastation caused by whitefly populations. Challenges Ahead for Transgenic Solutions “There are definitely still some hurdles this method needs to get over, most notably the skepticism about using transgenic plants,” he says “But in the future, I do see this as a very clear way of controlling whiteflies because now we know exactly the mechanism behind it, and we are equipped to deal with possible changes in the whitefly gene that may arise. Reference: “Whitefly hijacks a plant detoxification gene that neutralizes plant toxins” by Jixing Xia, Zhaojiang Guo, Zezhong Yang, Haolin Han, Shaoli Wang, Haifeng Xu, Xin Yang, Fengshan Yang, Qingjun Wu, Wen Xie and Xuguo Zhou, 25 March 2021, Cell. DOI: 10.1016/j.cell.2021.02.014 This research was supported by the National Key R & D Program of China, the National Natural Science Foundation of China, the China Agriculture Research System, the Beijing Key Laboratory for Pest Control and Sustainable Cultivation of Vegetables, and the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.
Illustration of the animals studied. Credit: Woranop Sukparangsi An ancient fish called a “living fossil” has assisted scientists in gaining a deeper understanding of stem cells, which could potentially lead to advancements in stem cell research and the creation of artificial organs. A beating heart, a complex organ responsible for pumping blood throughout the body. Not something typically associated with laboratory settings such as a Petri dish. However, this perception may change in the future as research progresses toward the creation of artificial organs, which have the potential to save the lives of those with organ failure. To design artificial organs you first have to understand stem cells and the genetic instructions that govern their remarkable properties. Professor Joshua Mark Brickman at the Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) has unearthed the evolutionary origins of a master gene that acts on a network of genes instructing stem cells. “The first step in stem cell research is to understand the gene regulatory network that supports so-called pluripotent stem cells. Understanding how their function was perfected in evolution can help provide knowledge about how to construct better stem cells,” says Joshua Mark Brickman. Pluripotent stem cells are stem cells that can develop into all other cells. For example, heart cells. If we understand how the pluripotent stem cells develop into a heart, then we are one step closer to replicating this process in a laboratory. A ‘Living Fossil’ Is the Key to Understanding Stem Cells The pluripotent property of stem cells – meaning that the cells can develop into any other cell – is something that has traditionally been associated with mammals. Now Joshua Mark Brickman and his colleagues have found that the master gene that controls stem cells and supports pluripotency also exists in a fish called coelacanth. In humans and mice, this gene is called OCT4 and they found that the coelacanth version could replace the mammalian one in mouse stem cells. In addition to the fact that the coelacanth is in a different class from mammals, it has also been called a ‘living fossil,’ since approximately 400 million years ago it developed into the form it has today. It has fins shaped like limbs and is therefore thought to resemble the first animals to move from the sea onto land. “By studying its cells, you can go back in evolution, so to speak,” explains Assistant Professor Molly Lowndes. Assistant Professor Woranop Sukparangsi continues: “The central factor controlling the gene network in stem cells is found in the coelacanth. This shows that the network already existed early in evolution, potentially as far back as 400 million years ago.” And by studying the network in other species, such as this fish, the researchers can distill what the basic concepts that support a stem cell are. “The beauty of moving back in evolution is that the organisms become simpler. For example, they have only one copy of some essential genes instead of many versions. That way, you can start to separate what is really important for stem cells and use that to improve how you grow stem cells in a dish,” says Ph.D. student Elena Morganti. Sharks, Mice, and Kangaroos In addition to the researchers finding out that the network around stem cells is much older than previously thought, and found in ancient species, they also learned how exactly evolution has modified the network of genes to support pluripotent stem cells. The researchers looked at the stem cell genes from over 40 animals. For example sharks, mice, and kangaroos. The animals were selected to provide a good sampling of the main branch points in evolution. The researchers used artificial intelligence to build three-dimensional models of the different OCT4 proteins. The researchers could see that the general structure of the protein is maintained across evolution. While the regions of these proteins known to be important for stem cells do not change, species-specific differences in apparently unrelated regions of these proteins alter their orientation, potentially affecting how well it supports pluripotency. “This a very exciting finding about evolution that would not have been possible prior to the advent of new technologies. You can see it as evolution cleverly thinking, we do not tinker with the ‘engine in the car’, but we can move the engine around and improve the drive train to see if it makes the car go faster,” says Joshua Mark Brickman. Reference: “Evolutionary origin of vertebrate OCT4/POU5 functions in supporting pluripotency” by Woranop Sukparangsi, Elena Morganti, Molly Lowndes, Hélène Mayeur, Melanie Weisser, Fella Hammachi, Hanna Peradziryi, Fabian Roske, Jurriaan Hölzenspies, Alessandra Livigni, Benoit Gilbert Godard, Fumiaki Sugahara, Shigeru Kuratani, Guillermo Montoya, Stephen R. Frankenberg, Sylvie Mazan and Joshua M. Brickman, 21 September 2022, Nature Communications. DOI: 10.1038/s41467-022-32481-z The study is a collaborative project spanning Australia, Japan, and Europe, with vital strategic partnerships with the groups of Sylvie Mazan at the Oceanological Observatory of Banyuls-sur-Mer in France and professor Guillermo Montoya at Novo Nordisk Foundation Center for Protein Research at the University of Copenhagen.
DVDV1551RTWW78V
Thailand pillow OEM manufacturer 》simplifying complex ideas into market-ready productsTaiwan anti-bacterial pillow ODM design 》your reliable OEM/ODM partner for long-term collaborationSoft-touch pillow OEM service in Taiwan 》where craftsmanship meets innovation and ESG values
下一則: Custom graphene foam processing Indonesia 》helping
限會員,要發表迴響,請先登入

