Contents ...
udn網路城邦
Innovative pillow ODM solution in China 》where mod
2025/05/01 13:06
瀏覽11
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Vietnam custom insole OEM supplier

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Graphene sheet OEM supplier China

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Taiwan insole ODM manufacturing factory for global brands

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.ODM pillow factory in China

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Thailand pillow OEM manufacturer

The research team also discovered that protective phenotypes, like the hard shells of most turtle species, might delay the aging process and, in some circumstances, even stop biological aging. The largest study of its kind reveals that wild turtles age slowly, live long lives, and uncovers several species that practically do not age. Jonathan the Seychelles giant tortoise, who is 190 years old, made headlines recently for being the “oldest living land animal in the world.” Although there is anecdotal evidence that certain species of turtles and other ectotherms, or “cold-blooded” creatures, live a long life, this evidence is spotty and mostly focuses on animals kept in zoos or a small number of individuals surviving in the wild. The largest study on aging and lifespan to date, conducted by an international team of 114 scientists and directed by Penn State and Northeastern Illinois University, has recently been published. It contains data gathered in the wild from 107 populations of 77 different species of reptiles and amphibians. A photo of a painted turtle (Chrysemys picta), a widespread North American species of freshwater turtle. Credit: Beth A. Reinke, Northeastern Illinois University The researchers discovered several things, including for the first time, that salamanders, crocodilians, and turtles had extremely slow aging rates and prolonged lifespans for their sizes. They recently published their results in the journal Science. The research team also discovered that protective phenotypes, such as the hard shells of the majority of turtle species, lead to slower aging and, in certain circumstances, even to “negligible aging,” or the absence of biological aging. “Anecdotal evidence exists that some reptiles and amphibians age slowly and have long lifespans, but until now no one has actually studied this on a large scale across numerous species in the wild,” said David Miller, senior author and associate professor of wildlife population ecology, Penn State. “If we can understand what allows some animals to age more slowly, we can better understand aging in humans, and we can also inform conservation strategies for reptiles and amphibians, many of which are threatened or endangered.” Investigating Aging Through Mark-Recapture Data In their study, the researchers used mark-recapture data, in which animals are taken, tagged, released back into the wild, and then watched, in conjunction with comparative phylogenetic approaches, which allow for investigation of organisms’ evolution. Their purpose was to compare ectotherm aging and lifespan in the wild to endotherms (warm-blooded animals) and investigate earlier assumptions about aging, such as manner of body temperature control and the presence or absence of protective physical features. The face of a tuatara (Sphenodon punctatus). Credit: Sarah Lamar Miller explained that the ‘thermoregulatory mode hypothesis’ suggests that ectotherms — because they require external temperatures to regulate their body temperatures and, therefore, often have lower metabolisms — age more slowly than endotherms, which internally generate their own heat and have higher metabolisms. “People tend to think, for example, that mice age quickly because they have high metabolisms, whereas turtles age slowly because they have low metabolisms,” said Miller. The team’s findings, however, reveal that ectotherms’ aging rates and lifespans range both well above and below the known aging rates for similar-sized endotherms, suggesting that the way an animal regulates its temperature — cold-blooded versus warm-blooded — is not necessarily indicative of its aging rate or lifespan. “We didn’t find support for the idea that a lower metabolic rate means ectotherms are aging slower,” said Miller. “That relationship was only true for turtles, which suggests that turtles are unique among ectotherms.” Protective Phenotypes and Slow Aging The protective phenotypes hypothesis suggests that animals with physical or chemical traits that confer protection — such as armor, spines, shells, or venom — have slower aging and greater longevity. The team documented that these protective traits do, indeed, enable animals to age more slowly and, in the case of physical protection, live much longer for their size than those without protective phenotypes. “It could be that their altered morphology with hard shells provides protection and has contributed to the evolution of their life histories, including negligible aging – or lack of demographic aging – and exceptional longevity,” said Anne Bronikowski, co-senior author and professor of integrative biology, Michigan State. Beth Reinke, first author and assistant professor of biology, at Northeastern Illinois University, further explained, “These various protective mechanisms can reduce animals’ mortality rates because they’re not getting eaten by other animals. Thus, they’re more likely to live longer, and that exerts pressure to age more slowly. We found the biggest support for the protective phenotype hypothesis in turtles. Again, this demonstrates that turtles, as a group, are unique.” Negligible Aging Observed Across Multiple Ectotherm Groups Interestingly, the team observed negligible aging in at least one species in each of the ectotherm groups, including frogs and toads, crocodilians, and turtles. An Iberian tree frog (Hyla molleri). Credit: Iñigo Martínez-Solano “It sounds dramatic to say that they don’t age at all, but basically their likelihood of dying does not change with age once they’re past reproduction,” said Reinke. Miller added, “Negligible aging means that if an animal’s chance of dying in a year is 1% at age 10, if it is alive at 100 years, its chance of dying is still 1%. By contrast, in adult females in the U.S., the risk of dying in a year is about 1 in 2,500 at age 10 and 1 in 24 at age 80. When a species exhibits negligible senescence (deterioration), aging just doesn’t happen.” Reinke noted that the team’s novel study was only possible because of the contributions of a large number of collaborators from across the world studying a wide variety of species. “Being able to bring these authors together who have all done years and years of work studying their individual species is what made it possible for us to get these more reliable estimates of aging rate and longevity that are based on population data instead of just individual animals,” she said. Bronikowski added, “Understanding the comparative landscape of aging across animals can reveal flexible traits that may prove worthy targets for biomedical study related to human aging.” Reference: “Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity” by Beth A. Reinke, Hugo Cayuela, Fredric J. Janzen, Jean-François Lemaître, Jean-Michel Gaillard, A. Michelle Lawing, John B. Iverson, Ditte G. Christiansen, Iñigo Martínez-Solano, Gregorio Sánchez-Montes, Jorge Gutiérrez-Rodríguez, Francis L. Rose, Nicola Nelson, Susan Keall, Alain J. Crivelli, Theodoros Nazirides, Annegret Grimm-Seyfarth, Klaus Henle, Emiliano Mori, Gaëtan Guiller, Rebecca Homan, Anthony Olivier, Erin Muths, Blake R. Hossack, Xavier Bonnet, David S. Pilliod, Marieke Lettink, Tony Whitaker, Benedikt R. Schmidt, Michael G. Gardner, Marc Cheylan, Françoise Poitevin, Ana Golubovic, Ljiljana Tomovic, Dragan Arsovski, Richard A. Griffiths, Jan W. Arntzen, Jean-Pierre Baron, Jean-François Le Galliard, Thomas Tully, Luca Luiselli, Massimo Capula, Lorenzo Rugiero, Rebecca McCaffery, Lisa A. Eby, Venetia Briggs-Gonzalez, Frank Mazzotti, David Pearson, Brad A. Lambert, David M. Green, Nathalie Jreidini, Claudio Angelini, Graham Pyke, Jean-Marc Thirion, Pierre Joly, Jean-Paul Léna, Anton D. Tucker, Col Limpus, Pauline Priol, Aurélien Besnard, Pauline Bernard, Kristin Stanford, Richard King, Justin Garwood, Jaime Bosch, Franco L. Souza, Jaime Bertoluci, Shirley Famelli, Kurt Grossenbacher, Omar Lenzi, Kathleen Matthews, Sylvain Boitaud, Deanna H. Olson, Tim S. Jessop, Graeme R. Gillespie, Jean Clobert, Murielle Richard, Andrés Valenzuela-Sánchez, Gary M. Fellers, Patrick M. Kleeman, Brian J. Halstead, Evan H. Campbell Grant, Phillip G. Byrne, Thierry Frétey, Bernard Le Garff, Pauline Levionnois, John C. Maerz, Julian Pichenot, Kurtulus Olgun, Nazan Üzüm, Aziz Avci, Claude Miaud, Johan Elmberg, Gregory P. Brown, Richard Shine, Nathan F. Bendik, Lisa O’Donnell, Courtney L. Davis, Michael J. Lannoo, Rochelle M. Stiles, Robert M. Cox, Aaron M. Reedy, Daniel A. Warner, Eric Bonnaire, Kristine Grayson, Roberto Ramos-Targarona, Eyup Baskale, David Muñoz, John Measey, F. Andre de Villiers, Will Selman, Victor Ronget, Anne M. Bronikowski and David A. W. Miller, 23 June 2022, Science. DOI: 10.1126/science.abm0151 The study was funded by the National Institutes of Health.

Cantabrigiaster fezouataensis from the Lower Ordovician (Tremadocian) Fezouata Shale, Zagora Morocco. Credit: Collections of the Claude Bernard University Lyon 1 Researchers from the University of Cambridge have discovered a fossil of the earliest starfish-like animal, which helps us understand the origins of the nimble-armed creature. The prototype starfish, which has features in common with both sea lilies and modern-day starfish, is a missing link for scientists trying to piece together its early evolutionary history. The exceptionally preserved fossil, named Cantabrigiaster fezouataensis, was discovered in Morocco’s Anti-Atlas mountain range. Its intricate design – with feathery arms akin to a lacework – has been frozen in time for roughly 480 million years. The new species is unusual because it doesn’t have many of the key features of its contemporary relatives, lacking roughly 60% of a modern starfish’s body plan. The fossil’s features are instead a hybrid between those of a starfish and a sea lily or crinoid — not a plant but a wavy-armed filter feeder which fixes itself to the seabed via a cylindrical ‘stem’. A Window into the Ordovician Biodiversification Event The discovery, reported in Biology Letters, captures the early evolutionary steps of the animal at a time in Earth’s history when life suddenly expanded, a period known as the Ordovician Biodiversification Event. Reconstruction of Cantabrigiaster fezouataensis by Madmeg. Credit: Madmeg The find also means scientists can now use the new find as a template to work out how it evolved from this more basic form to the complexity of their contemporaries. Ancient Yet Familiar Sea Creatures “Finding this missing link to their ancestors is incredibly exciting. If you went back in time and put your head under the sea in the Ordovician then you wouldn’t recognize any of the marine organisms — except the starfish, they are one of the first modern animals,” said lead author Dr Aaron Hunter, a visiting postdoctoral researcher in the Department of Earth Sciences. Modern starfish and brittle stars are part of a family of spiny-skinned animals called the echinoderms which, although they don’t have a backbone, are one of the closest group of animals to vertebrates. Crinoids, and otherworldly creatures like the sea urchins and sea cucumbers are all echinoderms. The Fezouata fossil site in Morocco, where Cantabrigiaster fezouataensis was uncovered. Credit: University of Cambridge The origin of starfish has eluded scientists for decades. But the new species is so well preserved that its body can finally be mapped in detail and its evolution understood. “The level of detail in the fossil is amazing – its structure is so complex that it took us a while to unravel its significance,” said Hunter. Reconnecting Fossils with Modern Relatives It was Hunter’s work on both living and fossil echinoderms that helped him spot its hybrid features. “I was looking at a modern crinoid in one of the collections at the Western Australian Museum and I realized the arms looked really familiar, they reminded me of this unusual fossil that I had found years earlier in Morocco but had found difficult to work with,” he said. Fezouata in Morocco is something of a holy grail for paleontologists — the new fossil is just one of the many remarkably well preserved soft-bodied animals uncovered from the site. Hunter and co-author Dr. Javier Ortega-Hernández, who was previously based at Cambridge’s Department of Zoology and is now based at Harvard University, named the species Cantabrigiaster in honor of the long history of echinoderm research at their respective institutions. Hunter and Ortega-Hernández examined their new species alongside a catalog of hundreds of starfish-like animals. They indexed all of their body structures and features, building a road map of the echinoderm skeleton which they could use to assess how Cantabrigiaster was related to other family members. Modern echinoderms come in many shapes and sizes, so it can be difficult to work out how they are related to one another. The new analysis, which uses extra-axial theory – a biology model usually only applied to living species – meant that Hunter and Ortega-Hernández could identify similarities and differences between the body plan of modern echinoderms and then figure out how each family member was linked to their Cambrian ancestors. Clues Point to Simpler Origins They found that only the key or axial part of the body, the food groove – which funnels food along each of the starfish’s arms – was present in Cantabrigiaster. Everything outside this, the extra-axial body parts, were added later. The authors plan to expand their work in search of early echinoderms. “One thing we hope to answer in the future is why starfish developed their five arms,” said Hunter. “It seems to be a stable shape for them to adopt – but we don’t yet know why. We still need to keep searching for the fossil that gives us that particular connection, but by going right back to the early ancestors like Cantabrigiaster we are getting closer to that answer.” Reference: “A new somasteroid from the Fezouata Lagerstätte in Morocco and the Early Ordovician origin of Asterozoa” by Aaron W. Hunter and Javier Ortega-Hernández, 20 January 2021, Biology Letters. DOI: 10.1098/rsbl.2020.0809

By combining machine learning with traditional evolutionary trees, researchers have identified 5,500 new RNA virus species. Ocean Water Samples Yield Treasure Trove of RNA Virus Data Ocean water samples collected around the world have yielded a treasure trove of new data about RNA viruses, expanding ecological research possibilities and reshaping our understanding of how these small but significant submicroscopic particles evolved. Combining machine-learning analyses with traditional evolutionary trees, an international team of researchers has identified 5,500 new RNA virus species that represent all five known RNA virus phyla and suggest there are at least five new RNA virus phyla needed to capture them. The most abundant collection of newly identified species belong to a proposed phylum researchers named Taraviricota, a nod to the source of the 35,000 water samples that enabled the analysis: the Tara Oceans Consortium, an ongoing global study onboard the schooner Tara of the impact of climate change on the world’s oceans. “There’s so much new diversity here – and an entire phylum, the Taraviricota, were found all over the oceans, which suggests they’re ecologically important,” said lead author Matthew Sullivan, professor of microbiology at The Ohio State University. Importance of RNA Viruses in Marine Ecosystems “RNA viruses are clearly important in our world, but we usually only study a tiny slice of them – the few hundred that harm humans, plants, and animals. We wanted to systematically study them on a very big scale and explore an environment no one had looked at deeply, and we got lucky because virtually every species was new, and many were really new.” The study was published on April 7, 2022, in the journal Science. This map shows the distribution of RNA viruses across the ocean. Wedge size is proportional to the average abundance of viruses present in that area, and wedge color indicates virus phyla. Credit: Reprinted with permission from Zayed et al., Science Volume 376:156(2022) While microbes are essential contributors to all life on the planet, viruses that infect or interact with them have a variety of influences on microbial functions. These types of viruses are believed to have three main functions: killing cells, changing how infected cells manage energy, and transferring genes from one host to another. Knowing more about virus diversity and abundance in the world’s oceans will help explain marine microbes’ role in ocean adaptation to climate change, the researchers say. Oceans absorb half of the human-generated carbon dioxide from the atmosphere, and previous research by this group has suggested that marine viruses are the “knob” on a biological pump affecting how carbon in the ocean is stored. By taking on the challenge of classifying RNA viruses, the team entered waters still rippling from earlier taxonomy categorization efforts that focused mostly on RNA viral pathogens. Within the biological kingdom Orthornavirae, five phyla were recently recognized by the International Committee on Taxonomy of Viruses (ICTV). “RdRp is supposed to be one of the most ancient genes – it existed before there was a need for DNA. So we’re not just tracing the origins of viruses, but also tracing the origins of life.” Ahmed Zayed Identification of Five New RNA Virus Phyla Though the research team identified hundreds of new RNA virus species that fit into those existing divisions, their analysis identified thousands more species that they clustered into five new proposed phyla: Taraviricota, Pomiviricota, Paraxenoviricota, Wamoviricota and Arctiviricota, which, like Taraviricota, features highly abundant species – at least in climate-critical Arctic Ocean waters, the area of the world where warming conditions wreak the most havoc. Sullivan’s team has long cataloged DNA virus species in the oceans, growing the numbers from a few thousand in 2015 and 2016 to 200,000 in 2019. For those studies, scientists had access to viral particles to complete the analysis. In these current efforts to detect RNA viruses, there were no viral particles to study. Instead, researchers extracted sequences from genes expressed in organisms floating in the sea, and narrowed the analysis to RNA sequences that contained a signature gene, called RdRp, which has evolved for billions of years in RNA viruses, and is absent from other viruses or cells. Because RdRp’s existence dates to when life was first detected on Earth, its sequence position has diverged many times, meaning traditional phylogenetic tree relationships were impossible to describe with sequences alone. Instead, the team used machine learning to organize 44,000 new sequences in a way that could handle these billions of years of sequence divergence, and validated the method by showing the technique could accurately classify sequences of RNA viruses already identified. “We had to benchmark the known to study the unknown,” said Sullivan, also a professor of civil, environmental and geodetic engineering, founding director of Ohio State’s Center of Microbiome Science, and a leadership team member in the EMERGE Biology Integration Institute. “We’ve created a computationally reproducible way to align those sequences to where we can be more confident that we are aligning positions that accurately reflect evolution.” Further analysis using 3D representations of sequence structures and alignment revealed that the cluster of 5,500 new species didn’t fit into the five existing phyla of RNA viruses categorized in the Orthornavirae kingdom. “We benchmarked our clusters against established, recognized phylogeny-based taxa, and that is how we found we have more clusters than those that existed,” said co-first author Ahmed Zayed, a research scientist in microbiology at Ohio State and a research lead in the EMERGE Institute. In all, the findings led the researchers to propose not only the five new phyla, but also at least 11 new orthornaviran classes of RNA viruses. The team is preparing a proposal to request formalization of the candidate phyla and classes by the ICTV. Zayed said the extent of new data on the RdRp gene’s divergence over time leads to a better understanding about how early life may have evolved on the planet. “RdRp is supposed to be one of the most ancient genes – it existed before there was a need for DNA,” he said. “So we’re not just tracing the origins of viruses, but also tracing the origins of life.” Reference: “Cryptic and abundant marine viruses at the evolutionary origins of Earth’s RNA virome” by Ahmed A. Zayed, James M. Wainaina, Guillermo Dominguez-Huerta, Eric Pelletier, Jiarong Guo, Mohamed Mohssen, Funing Tian, Akbar Adjie Pratama, Benjamin Bolduc, Olivier Zablocki, Dylan Cronin, Lindsey Solden, Erwan Delage, Adriana Alberti, Jean-Marc Aury, Quentin Carradec, Corinne da Silva, Karine Labadie, Julie Poulain, Hans-Joachim Ruscheweyh, Guillem Salazar, Elan Shatoff, Tara Oceans Coordinators, Ralf Bundschuh, Kurt Fredrick, Laura S. Kubatko, Samuel Chaffron, Alexander I. Culley, Shinichi Sunagawa, Jens H. Kuhn, Patrick Wincker, Matthew B. Sullivan, Silvia G. Acinas, Marcel Babin, Peer Bork, Emmanuel Boss, Chris Bowler, Guy Cochrane, Colomban de Vargas, Gabriel Gorsky, Lionel Guidi, Nigel Grimsley, Pascal Hingamp, Daniele Iudicone, Olivier Jaillon, Stefanie Kandels, Lee Karp-Boss, Eric Karsenti, Fabrice Not, Hiroyuki Ogata, Nicole Poulton, Stéphane Pesant, Christian Sardet, Sabrinia Speich, Lars Stemmann, Matthew B. Sullivan, Shinichi Sungawa and Patrick Wincker, 7 April 2022, Science. DOI: 10.1126/science.abm5847 This research was supported by the National Science Foundation, the Gordon and Betty Moore Foundation, the Ohio Supercomputer Center, Ohio State’s Center of Microbiome Science, the EMERGE Biology Integration Institute, the Ramon-Areces Foundation and Laulima Government Solutions/NIAID. The work was also made possible by the unprecedented sampling and science of the Tara Oceans Consortium, the nonprofit Tara Ocean Foundation and its partners. Additional co-authors on the paper were co-lead authors James Wainaina and Guillermo Dominguez-Huerta, as well as Jiarong Guo, Mohamed Mohssen, Funing Tian, Adjie Pratama, Ben Bolduc, Olivier Zablocki, Dylan Cronin and Lindsay Solden, all of Sullivan’s lab; Ralf Bundschuh, Kurt Fredrick, Laura Kubatko and Elan Shatoff of Ohio State’s College of Arts and Sciences; Hans-Joachim Ruscheweyh, Guillem Salazar and Shinichi Sunagawa of the Institute of Microbiology and Swiss Institute of Bioinformatics; Jens Kuhn of the National Institute of Allergy and Infectious Diseases; Alexander Culley of the Université Laval; Erwan Delage and Samuel Chaffron of the Université de Nantes; and Eric Pelletier, Adriana Alberti, Jean-Marc Aury, Quentin Carradec, Corinne da Silva, Karine Labadie, Julie Poulain and Patrick Wincker of Genoscope.

DVDV1551RTWW78V



Custom graphene foam processing Vietnam 》a trusted OEM/ODM partner across comfort-driven industriesIndonesia high-end foam product OEM/ODM 》perfect for brands looking to scale with low-MOQ flexibilityChina OEM insole and pillow supplier 》small batch friendly, big on consistency

限會員,要發表迴響,請先登入