Contents ...
udn網路城邦
Ergonomic insole ODM production factory Taiwan 》wh
2025/05/01 17:37
瀏覽27
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Customized sports insole ODM Thailand

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.ODM pillow for sleep brands Indonesia

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Taiwan sustainable material ODM solutions

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Indonesia custom neck pillow ODM

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Thailand ODM expert for comfort products

Research shows DPANN archaea selectively consume host lipids, prompting significant changes in host metabolism and membrane resilience and potentially affecting environmental adaptability. Credit: SciTechDaily Microbiologists from NIOZ, the Royal Netherlands Institute for Sea Research, have discovered that certain parasitic microbes, specifically a group known as DPANN archaea, not only feed on their hosts but also change the host’s metabolism and biology. Their study reveals that these archaea selectively consume certain lipids from their hosts, potentially causing the hosts to alter their metabolic processes. The research team, which includes Su Ding, Joshua Hamm, Nicole Bale, Jaap Damsté, and Anja Spang, published these findings in a recent Nature Communications article. Understanding Archaea Archaea are a distinct group of single-celled organisms that, like bacteria, do not have a nucleus with DNA, or other organelles within their cells. The study focuses on DPANN archaea, which are characterized by their tiny cell size and limited genetic material. These archaea are dependent on other microbes for survival, attaching to them and extracting lipids to construct their own cellular membranes. Electron microscopy showing the parasitic Ca. Nha. antarcticus: the small circular shape, attached to its host, Hrr. lacusprofundi. Credit: Joshua N Hamm Selective Feeding Contrary to the previous belief that these parasitic archaea indiscriminately consume any lipids from their hosts for their membranes, recent findings by Ding and Hamm indicate a more selective behavior. Specifically, the parasitic archaeon Candidatus Nanohaloarchaeum antarcticus selectively incorporates only certain lipids from its host, Halorubrum lacusprofundi. Hamm summarizes, “In other words: Ca. N. antarcticus is a picky eater.” Archaea, Bacteria and Higher Organisms Archaea are single celled organisms that were long believed to be a specific group of bacteria. Similar to bacteria, they do not have a nucleus with dna, or other organelles within their cells. As of the 1970’s, however, microbiologists no longer consider archaea bacteria, but classify them as a separate domain in all life forms. So, now we have archaea, bacteria, and eukaryotes, the latter including all animals and plants, that have a nucleus with genetic material in their cells. Host Adaptations to Parasitic Activity By analyzing the lipids of the hosts both with and without parasites, Ding and Hamm were able to show that hosts adapt to the presence of parasites by altering their membranes. This involves changing both the types and quantities of lipids used, as well as modifying the lipids to change their behavior, leading to increased metabolism and a more resilient membrane that is tougher for the parasite to penetrate. According to Hamm, this could have serious consequences for the host.“If the membrane of the host changes, this could have an impact on how these hosts can respond to environmental changes, in for example temperature or acidity,” he explains. Another example of the parasitic Ca. Nha. antarcticus attached to its host, Hrr. lacusprofundi. Credit: Joshua N Hamm Revolutionary Analytical Techniques Another groundbreaking aspect of this research was the development of a new analytical technique by Su Ding at NIOZ. Previously, lipid analysis required prior knowledge of the lipid groups to be targeted. Ding’s new technique allows for the examination of all lipids simultaneously, including unknown types, facilitating the discovery of changes in lipid composition. “We probably wouldn’t have been able to see the changes in the lipids if we had used a classical approach, but the new approach made it straightforward,” says Hamm. Implications for Microbial Ecology These findings offer profound insights into microbial interactions and ecology. “Not only does it shed a first light on the interactions between different archaea; it gives a totally new insight into the fundamentals of microbial ecology,” Hamm remarks. He emphasizes the importance of future research to determine how these interactions might affect the stability of microbial communities under changing environmental conditions. Reference: “Selective lipid recruitment by an archaeal DPANN symbiont from its host” by Su Ding, Joshua N. Hamm, Nicole J. Bale, Jaap S. Sinninghe Damsté and Anja Spang, 22 April 2024, Nature Communications. DOI: 10.1038/s41467-024-47750-2

The complete set of neurons in an insect brain, which were reconstructed using synapse-resolution electron microscopy. Credit: Johns Hopkins University/University of Cambridge Scientists have constructed the first-ever map showing every single neuron and how they’re wired together in the brain of the fruit fly larva. Researchers have built the first-ever map showing every single neuron and how they’re wired together in the brain of the fruit fly larva. This huge step forwards in science will ultimately help us understand the basic principles by which signals travel through the brain at the neural level and lead to behavior and learning.   The map of the 3016 neurons that make up the larva’s brain and the detailed circuitry of neural pathways within it is known as a ‘connectome’. It’s the largest complete brain connectome described yet. Professor Marta Zlatic and Professor Albert Cardona of the Medical Research Council Laboratory of Molecular Biology and the University of Cambridge and colleagues from both the UK and the US led this ground-breaking research. The study was published in the journal Science on March 10, 2023. A diagram depicting the connectivity, where neurons are represented as points, and neurons with more similar connectivity are plotted closer together. Lines depict connections between neurons. The border of the figure shows example neuron morphologies. Credit: Johns Hopkins University/University of Cambridge Understanding Brain Structure and Neural Computation An organism’s nervous system, including the brain, is made up of neurons that are connected to each other via synapses. Information in the form of chemicals passes from one neuron to another through these contact points. Professor Zlatic said: “The way the brain circuit is structured influences the computations the brain can do. But, up until this point, we’ve not seen the structure of any brain except of the roundworm C. elegans, the tadpole of a low chordate, and the larva of a marine annelid, all of which have several hundred neurons. This means neuroscience has been mostly operating without circuit maps. Without knowing the structure of a brain, we’re guessing on the way computations are implemented. But now, we can start gaining a mechanistic understanding of how the brain works.” Zlatic explained that current technology isn’t yet advanced enough to map the connectome for higher animals such as large mammals. However, she said: “All brains are similar – they are all networks of interconnected neurons – and all brains of all species have to perform many complex behaviors: they all need to process sensory information, learn, select actions, navigate their environments, choose food, recognize their conspecifics, escape from predators, etc. In the same way that genes are conserved across the animal kingdom, I think that the basic circuit motifs that implement these fundamental behaviors will also be conserved.” The complete set of neurons in an insect brain. Credit: Johns Hopkins University/University of Cambridge To build a picture of the fruit fly larva connectome, Zlatic, Cardona and colleagues scanned thousands of slices of the larva’s brain using a high-resolution electron microscope. They reconstructed the resulting images into a map of the fly’s brain and painstakingly annotated the connections between neurons. As well as mapping the 3016 neurons, they mapped an incredible 548,000 synapses. The researchers also developed computational tools to identify likely pathways of information flow and different types of circuit motifs in the insect’s brain They also found that some of the structural features are exactly like state-of-the-art deep learning architecture. Zlatic said: “The most challenging aspect of this work was understanding and interpreting what we saw. We were faced with a complex neural circuit with lots of structure. In collaboration with Professor Priebe and Professor Vogestein’s groups at Johns Hopkins University, we developed computational tools to extract and predict from the structure the relevant circuit motives. By comparing this biological system, we can potentially also inspire better artificial networks.” Impacts on Neuroscience and Future Therapeutic Potential Jo Latimer, Head of Neurosciences and Mental Health at the Medical Research Council, said: “This is an exciting and significant body of work by colleagues at the MRC Laboratory of Molecular Biology and others. Not only have they mapped every single neuron in the insect’s brain, but they’ve also worked out how each neuron is connected. This is a big step forward in addressing key questions about how the brain works, particularly how signals move through the neurons and synapses leading to behavior, and this detailed understanding may lead to therapeutic interventions in the future.” The next step will be to delve deeper to understand, for example, the architecture required for specific behavioral functions, such as learning and decision making, and look at activity in the whole connectome while the insect is doing things. For more on this research, see First Complete Map of an Insect Brain. Reference: “The connectome of an insect brain” by Michael Winding, Benjamin D. Pedigo, Christopher L. Barnes, Heather G. Patsolic, Youngser Park, Tom Kazimiers, Akira Fushiki, Ingrid V. Andrade, Avinash Khandelwal, Javier Valdes-Aleman, Feng Li, Nadine Randel, Elizabeth Barsotti, Ana Correia, Richard D. Fetter, Volker Hartenstein, Carey E. Priebe, Joshua T. Vogelstein, Albert Cardona and Marta Zlatic, 10 March 2023, Science. DOI: 10.1126/science.add9330

Folate Test Blood Sample As many expectant mothers know, getting enough folate is key to avoiding neural tube defects in the baby during pregnancy. But for the individuals who carry certain genetic variants, dealing with folate deficiency can be a life-long struggle that can lead to serious neurological and heart problems and even death. Now a Donnelly Centre study offers clues to how to recognize early those who are most at risk. Defects in an enzyme called MTHFR, or 5,10-methylenetetrahydrofolate reductase, which modifies folate, or vitamin B9 as it is also known, to produce other essential cellular components, can increase a person’s need for folate. MTHFR deficiency occurs when a person inherits two defective copies of this gene, one from each parent. Disease severity depends on the exact changes in the composition of the amino-acid residues which make up the protein and which are encoded by the two copies of the gene that a person carries. “The benefit of recognizing MTHFR deficiency early is that you can start preventative therapy, including a high folate diet, very early in life and prevent or reduce the most severe effects,” says Fritz Roth, a professor of molecular genetics in the Donnelly Centre for Cellular and Biomolecular Research at the Temerty Faculty of Medicine and senior author on a new study into the genetic causes of the disorder. Their findings are published in the American Journal of Human Genetics. There are likely thousands of variants circulating in the population whose effects on folate metabolism — and health — remain unknown. Knowing which variants impair enzyme function can help predict, and possibly prevent, the negative consequences associated with MTHFR deficiency. Which is why Roth’s team decided to construct all possible MTHFR variants to identify the ones that don’t function properly and therefore could impact health. Known as deep mutational scanning, the approach entails substituting each of the enzyme’s 656 amino-acid residues with another of the 20 naturally occurring amino-acids, and testing how well the altered enzyme functions. The research is part of a wider effort to experimentally test human variant functions that is happening in labs around the world including the Atlas of Variant Effects Alliance co-founded by Roth. A related “Impact of Genomic Variation on Function” initiative is being launched this fall by the National Institutes of Health in the U.S. “The point of this work is to be ready and know the damaging variants ahead of time instead of waiting for the variant to be identified in a patient and then do experiments on it,” says Roth, who is also Senior Investigator at the Lunenfeld-Tanenbaum Research Institute at Sinai Health Systems and holds Canada Excellence Research Chair in Integrative Biology. “We want to be ready when a new one comes along.” To test variant function, the researchers introduced each variant one at a time into Baker’s yeast cells which had been engineered to lack their own version of the MTHFR gene without which they cannot grow on a given medium. Human MTHFR variants were then scored as functional or nonfunctional, or somewhere in between, based on their ability to rescue yeast growth. While the most damaging mutations which abolish MTHFR function are rare, other variants can impact the enzyme in more subtle ways to make it less efficient. Indeed, as many as half of humans carry at least one copy of an MTHFR variant known as A222V, with the amino-acid alanine changed into valine at position 222. For the 10% of women who carry two copies, a folate-rich diet may be sufficient to stave off the risk of birth defects. But having a copy of A222V might significantly raise disease risk (in both men and women) if another gene variant whose function is not known is also present in the same individual. To test this, Roth’s team examined all MTHFR variants, but this time together with A222V. “A variant could have one effect in the normal reference human background but have a stronger effect together with this common A222V variant and we wanted to investigate that,” says Roth. They found that the common A222V variant can impact the effect of other variants, which on their own might not impair enzyme function. Different amino acid changes within the same gene can interact with each other to impact enzyme function, so that identifying interactions for variant combination before they are seen in patients might help predict disease severity. “Clinical geneticists will usually be right in saying that this common variant is not a big deal, and that you can overcome its effects by getting more dietary folate, but a major point of our paper is that A222V also changes the impact of other variants,” says Roth. “MTHFR is just the beginning. Having an atlas of maps for other disease-related genes could help us better interpret individual genomes and allow earlier diagnosis and prevention when we see a concerning variant.” Reference: “Shifting landscapes of human MTHFR missense-variant effects” by Jochen Weile, Nishka Kishore, Song Sun, Ranim Maaieh, Marta Verby, Roujia Li, Iosifina Fotiadou, Julia Kitaygorodsky, Yingzhou Wu, Alexander Holenstein, Céline Bürer, Linnea Blomgren, Shan Yang, Robert Nussbaum, Rima Rozen, David Watkins, Marinella Gebbia, Viktor Kozich, Michael Garton, D. Sean Froese and Frederick P. Roth, 1 July 2021, American Journal of Human Genetics. DOI: 10.1016/j.ajhg.2021.05.009 Funding: National Institutes of Health, Canada Excellence Research Chairs Program, Canadian Institutes for Health Research

DVDV1551RTWW78V



Ergonomic insole ODM support Thailand 》ready to support your next launch with full-process expertiseMemory foam pillow OEM factory Taiwan 》crafted to meet the needs of todayis conscious consumersGraphene cushion OEM factory in China 》trusted by global brands for reliable quality and flexibility

限會員,要發表迴響,請先登入