Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Graphene sheet OEM supplier China
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Indonesia ergonomic pillow OEM supplier
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Thailand high-end foam product OEM/ODM
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Vietnam flexible graphene product manufacturing
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Thailand custom neck pillow ODM
A groundbreaking study maps the genetic relationships of over 9,500 flowering plant species, creating an advanced tree of life that enhances our understanding of their evolutionary history and potential uses in various scientific fields. Credit: SciTechDaily.com The largest-ever tree of life for flowering plants has been constructed by sequencing the DNA of more than 9,500 species, charting the evolutionary and genetic connections among these plants. A recent study published in the journal Nature, authored by an international team of 279 researchers, including three scientists from the New York Botanical Garden (NYBG), offers the latest insights into the evolutionary and genetic relationships among flowering plants. These plants account for approximately 90 percent of all known plant species. Using 1.8 billion letters of genetic code from over 9,500 species covering almost 8,000 plant genera (groups of closely related species), the research team was able to create the most detailed tree of life—a graphic depiction of species relationships similar to a genealogical family tree—to date for this group of plants, shedding new light on the evolutionary history of flowering plants and their rise to ecological dominance on Earth. The study’s authors believe the data will aid future attempts to identify new species, refine plant classification, uncover new medicinal compounds, and conserve plants in the face of the dual biodiversity and climate crises. Contributing to this major milestone in plant science were Fabián Michelangeli, Ph.D., Abess Curator of Tropical Botany and Director of NYBG’s Institute of Systematic Botany; Gregory M. Plunkett, Ph.D., Director and Curator of NYBG’s Cullman Program for Molecular Systematics; and John D. Mitchell, NYBG Affiliated Scientist. An international team of researchers, including three New York Botanical Garden (NYBG) scientists, used genetic code from more than 9,500 flowering plant species to create the most detailed evolutionary tree of life for this group of plants to date. Credit: RBG Kew “While the main goals of this large-scale project were to understand the relationships of all flowering plant genera, it also sheds light on the timing of major events in the evolution of complex flower forms and life histories,” Dr. Michelangeli said. “Large analyses such as this can provide context for conservation strategies, sustainable agriculture, and many other applications that need basic biodiversity knowledge. Understanding how organisms are related is the building block of all biodiversity science and applications.” The research team—led by the Royal Botanic Gardens, Kew, and involving 138 organizations internationally—used 15 times more data than any comparable studies of the flowering plant tree of life. Among the species included in the study, the DNA of more than 800 had never been sequenced before. The sheer amount of data unlocked by this research, which would take a single computer 18 years to process, is a huge stride towards building a tree of life for all 330,000 known species of flowering plants. Drs. Michelangeli and Plunkett and Mr. Mitchell provided expertise on the plant families they study as well as expertly identified samples for a variety of plant groups, with a large proportion coming from the Melastomataceae family of tropical plants, which is Dr. Michelangeli’s specialty, and the Apiaceae (parsley or carrot) and Araliaceae (ginseng) families, which Dr. Plunkett studies. Unlocking Historic Herbarium Specimens for Cutting-Edge Research The flowering plant tree of life, much like a family tree, enables scientists to understand how different species are related to each other. The tree of life is uncovered by comparing DNA sequences between different species to identify changes (mutations) that accumulate over time like a molecular fossil record. Science’s understanding of the tree of life is improving rapidly in tandem with advances in DNA-sequencing technology. For this study, new genomic techniques were developed to magnetically capture hundreds of genes and hundreds of thousands of letters of genetic code from every sample, orders of magnitude more than earlier methods. A key advantage of the team’s approach is that it enables a wide diversity of plant material, old and new, to be sequenced, even when the DNA is badly damaged. The vast treasure troves of dried, preserved plants in the world’s herbarium collections, which comprise nearly 400 million specimens, can now be studied genetically. Using such specimens, the team successfully sequenced a sandwort (Arenaria globiflora) collected nearly 200 years ago in Nepal and, despite the poor quality of its DNA, were able to place it on the tree of life. The team even analyzed extinct plants, such has the Guadalupe Island olive (Hesperelaea palmeri), which has not been seen alive since 1875. In fact, 511 of the species sequenced are already at risk of extinction, according to the Red List, the authoritative compilation of the world’s threatened plant, fungal, and animal species maintained by the International Union for Conservation of Nature. Across all 9,506 species sequenced, over 3,400 came from material sourced from 163 herbaria in 48 countries. Additional material from plant collections around the world such as DNA banks, seeds, and living collections have been vital for filling key knowledge gaps to shed new light on the history of flowering plant evolution. The team also benefited from publicly available data for over 1,900 species, highlighting the value of the open-science approach to future genomic research. Illuminating Darwin’s “Abominable Mystery” Flowering plants account for about 90 percent of all known plant life on land and are found virtually everywhere on the planet—from the steamiest tropics to the rocky outcrops of the Antarctic Peninsula. And yet our understanding of how these plants came to dominate the scene soon after their origin has baffled scientists for generations, including Charles Darwin. Flowering plants originated over 140 million years ago after which they rapidly overtook other vascular plants, including their closest living relatives—the gymnosperms, non-flowering plants that have naked seeds such as cycads, conifers, and ginkgo. Darwin was mystified by the seemingly sudden appearance of such diversity in the fossil record. In an 1879 letter to Joseph Dalton Hooker, his close confidant and Director of the Royal Botanic Gardens, Kew, he wrote, “The rapid development as far as we can judge of all the higher plants within recent geological times is an abominable mystery.” Using 200 fossils, the researchers scaled their tree of life to time, revealing how flowering plants evolved across geological time. They found that early flowering plants exploded in diversity, giving rise to over 80 percent of the major lineages that exist today shortly after their origin. However, this trend then declined to a steadier rate for the next 100 million years until another surge in diversification about 40 million years ago, coinciding with a global decline in temperatures. These new insights would have fascinated Darwin and will surely help today’s scientists grappling with the challenges of understanding how and why species diversify. Assembling a tree of life this extensive would have been impossible without the collaboration of scientists across the globe. In total, 279 authors were involved in the research, representing many different nationalities from 138 organizations in 27 countries. International collaborators shared their unique botanical expertise as well as many invaluable plant samples from around the world that could not be obtained without their help. The comprehensive nature of the tree is in no small part a result of this wide-ranging partnership. “Efforts like this show how the international scientific community can come together to collaborate and produce something that no one research group or institution can do alone,” Dr. Michelangeli said. Putting the Flowering Plant Tree of Life to Good Use The flowering plant tree of life has enormous potential in biodiversity research. This is because, just as one can predict the properties of an element based on its position in the periodic table, the location of a species in the tree of life allows scientists to predict its properties. The new data will thus be invaluable for enhancing many areas of science and beyond. To enable this, the tree and all of the data that underpin it have been made openly and freely accessible to both the public and scientific community, including through the Kew Tree of Life Explorer. The study’s authors believe such open access is key to democratizing access to scientific data across the globe. Open access will also help scientists to make the best use of the data such as combining it with artificial intelligence to predict which plant species may include molecules with medicinal potential. Similarly, the tree of life can be used to better understand and predict how pests and diseases might affect the world’s plants in the future. Ultimately, the authors note, the applications of the data will be driven by the ingenuity of scientists. Reference: “Phylogenomics and the rise of the angiosperms” by Alexandre R. Zuntini, Tom Carruthers, Olivier Maurin, Paul C. Bailey, Kevin Leempoel, Grace E. Brewer, Niroshini Epitawalage, Elaine Françoso, Berta Gallego-Paramo, Catherine McGinnie, Raquel Negrão, Shyamali R. Roy, Lalita Simpson, Eduardo Toledo Romero, Vanessa M. A. Barber, Laura Botigué, James J. Clarkson, Robyn S. Cowan, Steven Dodsworth, Matthew G. Johnson, Jan T. Kim, Lisa Pokorny, Norman J. Wickett, Guilherme M. Antar, Lucinda DeBolt, Karime Gutierrez, Kasper P. Hendriks, Alina Hoewener, Ai-Qun Hu, Elizabeth M. Joyce, Izai A. B. S. Kikuchi, Isabel Larridon, Drew A. Larson, Elton John de Lírio, Jing-Xia Liu, Panagiota Malakasi, Natalia A. S. Przelomska, Toral Shah, Juan Viruel, Theodore R. Allnutt, Gabriel K. Ameka, Rose L. Andrew, Marc S. Appelhans, Montserrat Arista, María Jesús Ariza, Juan Arroyo, Watchara Arthan, Julien B. Bachelier, C. Donovan Bailey, Helen F. Barnes, Matthew D. Barrett, Russell L. Barrett, Randall J. Bayer, Michael J. Bayly, Ed Biffin, Nicky Biggs, Joanne L. Birch, Diego Bogarín, Renata Borosova, Alexander M. C. Bowles, Peter C. Boyce, Gemma L. C. Bramley, Marie Briggs, Linda Broadhurst, Gillian K. Brown, Jeremy J. Bruhl, Anne Bruneau, Sven Buerki, Edie Burns, Margaret Byrne, Stuart Cable, Ainsley Calladine, Martin W. Callmander, Ángela Cano, David J. Cantrill, Warren M. Cardinal-McTeague, Mónica M. Carlsen, Abigail J. A. Carruthers, Alejandra de Castro Mateo, Mark W. Chase, Lars W. Chatrou, Martin Cheek, Shilin Chen, Maarten J. M. Christenhusz, Pascal-Antoine Christin, Mark A. Clements, Skye C. Coffey, John G. Conran, Xavier Cornejo, Thomas L. P. Couvreur, Ian D. Cowie, Laszlo Csiba, Iain Darbyshire, Gerrit Davidse, Nina M. J. Davies, Aaron P. Davis, Kor-jent van Dijk, Stephen R. Downie, Marco F. Duretto, Melvin R. Duvall, Sara L. Edwards, Urs Eggli, Roy H. J. Erkens, Marcial Escudero, Manuel de la Estrella, Federico Fabriani, Michael F. Fay, Paola de L. Ferreira, Sarah Z. Ficinski, Rachael M. Fowler, Sue Frisby, Lin Fu, Tim Fulcher, Mercè Galbany-Casals, Elliot M. Gardner, Dmitry A. German, Augusto Giaretta, Marc Gibernau, Lynn J. Gillespie, Cynthia C. González, David J. Goyder, Sean W. Graham, Aurélie Grall, Laura Green, Bee F. Gunn, Diego G. Gutiérrez, Jan Hackel, Thomas Haevermans, Anna Haigh, Jocelyn C. Hall, Tony Hall, Melissa J. Harrison, Sebastian A. Hatt, Oriane Hidalgo, Trevor R. Hodkinson, Gareth D. Holmes, Helen C. F. Hopkins, Christopher J. Jackson, Shelley A. James, Richard W. Jobson, Gudrun Kadereit, Imalka M. Kahandawala, Kent Kainulainen, Masahiro Kato, Elizabeth A. Kellogg, Graham J. King, Beata Klejevskaja, Bente B. Klitgaard, Ronell R. Klopper, Sandra Knapp, Marcus A. Koch, James H. Leebens-Mack, Frederic Lens, Christine J. Leon, Étienne Léveillé-Bourret, Gwilym P. Lewis, De-Zhu Li, Lan Li, Sigrid Liede-Schumann, Tatyana Livshultz, David Lorence, Meng Lu, Patricia Lu-Irving, Jaquelini Luber, Eve J. Lucas, Manuel Luján, Mabel Lum, Terry D. Macfarlane, Carlos Magdalena, Vidal F. Mansano, Lizo E. Masters, Simon J. Mayo, Kristina McColl, Angela J. McDonnell, Andrew E. McDougall, Todd G. B. McLay, Hannah McPherson, Rosa I. Meneses, Vincent S. F. T. Merckx, Fabián A. Michelangeli, John D. Mitchell, Alexandre K. Monro, Michael J. Moore, Taryn L. Mueller, Klaus Mummenhoff, Jérôme Munzinger, Priscilla Muriel, Daniel J. Murphy, Katharina Nargar, Lars Nauheimer, Francis J. Nge, Reto Nyffeler, Andrés Orejuela, Edgardo M. Ortiz, Luis Palazzesi, Ariane Luna Peixoto, Susan K. Pell, Jaume Pellicer, Darin S. Penneys, Oscar A. Perez-Escobar, Claes Persson, Marc Pignal, Yohan Pillon, José R. Pirani, Gregory M. Plunkett, Robyn F. Powell, Ghillean T. Prance, Carmen Puglisi, Ming Qin, Richard K. Rabeler, Paul E. J. Rees, Matthew Renner, Eric H. Roalson, Michele Rodda, Zachary S. Rogers, Saba Rokni, Rolf Rutishauser, Miguel F. de Salas, Hanno Schaefer, Rowan J. Schley, Alexander Schmidt-Lebuhn, Alison Shapcott, Ihsan Al-Shehbaz, Kelly A. Shepherd, Mark P. Simmons, André O. Simões, Ana Rita G. Simões, Michelle Siros, Eric C. Smidt, James F. Smith, Neil Snow, Douglas E. Soltis, Pamela S. Soltis, Robert J. Soreng, Cynthia A. Sothers, Julian R. Starr, Peter F. Stevens, Shannon C. K. Straub, Lena Struwe, Jennifer M. Taylor, Ian R. H. Telford, Andrew H. Thornhill, Ifeanna Tooth, Anna Trias-Blasi, Frank Udovicic, Timothy M. A. Utteridge, Jose C. Del Valle, G. Anthony Verboom, Helen P. Vonow, Maria S. Vorontsova, Jurriaan M. de Vos, Noor Al-Wattar, Michelle Waycott, Cassiano A. D. Welker, Adam J. White, Jan J. Wieringa, Luis T. Williamson, Trevor C. Wilson, Sin Yeng Wong, Lisa A. Woods, Roseina Woods, Stuart Worboys, Martin Xanthos, Ya Yang, Yu-Xiao Zhang, Meng-Yuan Zhou, Sue Zmarzty, Fernando O. Zuloaga, Alexandre Antonelli, Sidonie Bellot, Darren M. Crayn, Olwen M. Grace, Paul J. Kersey, Ilia J. Leitch, Hervé Sauquet, Stephen A. Smith, Wolf L. Eiserhardt, Félix Forest and William J. Baker, 24 April 2024, Nature. DOI: 10.1038/s41586-024-07324-0
Scientists are revisiting Darwin’s “Origin of Species” through the lens of the microbiome, exploring how this new knowledge might change our understanding of evolution. Vanderbilt researchers are reimagining Charles Darwin’s work by communicating how the origin of species might depend largely on the microbiome—the totality of bacteria, viruses, fungi and other organisms—living in or on a host body. Darwin’s On the Origin of Species put forth a seminal and revolutionary thesis for the life sciences in 1859: Populations with a common ancestor evolve over time with enough change to become different species that no longer successfully interbreed. This process of descent with modification continues over time to produce lineages of new species. Darwin famously referred to the process of one species becoming two as “the mystery of mysteries.” More than 160 years later, the life sciences are experiencing a second revolution based on the newly appreciated knowledge that all plant and animal species are stable or temporary hosts to a microbiome living in or on the body. An essay and literature review first authored by SyBBURE scholar and biological sciences undergraduate Asia Miller and co-authored by Seth Bordenstein, Centennial Chair in Biological Sciences, professor of biological sciences and director of the Vanderbilt Microbiome Innovation Center, imagines how some chapters in Darwin’s Origin of Species would look with our current understanding of the host-associated microbiome. The article includes examples of how the microbiome of a hybrid—the offspring of two species—can be different and potentially harmful from that of its two parental species. “The microbiome field is relatively new but already full of research and ideas. Through this work, we are emphasizing the diverse roles of microorganisms in animal biology and that not every microbiome is a fit for every host,” said Miller, who is also president and founder of the Vanderbilt University Microbiome Society. Why It Matters This work highlights how the evidence for microbiomes as agents of host speciation has essentially reached a tipping point for microbiologists, evolutionary biologists, chemists, immunologists, and developmental biologists. It sets the stage for a more integrative phase of study, funding, and meetings focused on host-microbe interactions shaping the origin of species. “We compiled a rich summary of evidence that shows hybrids generated between different, closely related animal species—including mites, flies, wasps, fish, mice, deer, and horses—have microbiomes that are different from their parentals. We showed that some of the hybrids suffer or even die because of these altered microbiomes, adding cumulative weight to the evidence that host-associated microbiomes should no longer be overlooked as components to understanding the origin of species,” Miller said. What’s Next Miller and co-author and NSF Postdoctoral Scholar Karissa Cross will be investigating the microbiome of Nasonia, a genus of parasitoid wasps. Some hybrid Nasonia do not survive because of how different their microbiomes are from their parents’. In the long term, the researchers would like to see this inflection point in the discipline contribute to increased research engagement on the microbiome and its effects on speciation, which Darwin viewed as grandeur, most beautiful and most wonderful, Miller said. Reference: “The Role of the Microbiome in Host Hybridization and Speciation” by Asia K. Miller, Camille S. Westlake, Karissa L. Cross, Brittany A. Leigh and Seth R. Bordenstein, 26 October 2021, PLOS Biology. DOI: 10.1371/journal.pbio.3001417 This work was supported by the Vanderbilt Microbiome Innovation Center, a Searle Undergraduate Research Program Fellowship, NIH Ruth Kirschstein Postdoctoral Fellowship F32 AI140694-03, and NSF Postdoctoral Research Fellowship in Biology grant 201069. Former postdoctoral researcher Brittany A. Leigh and former undergraduate biological sciences student Camille S. Westlake are co-authors on this essay.
Nests of icefish. Researchers on the Polarstern vessel identified a significant icefish breeding colony in the Antarctic Weddell Sea, covering an area as large as Malta with around 60 million nests. Credit: AWI OFOBS Team Researchers detect around 60 million nests of Antarctic icefish over a 240 square kilometers area in the Weddell Sea. Near the Filchner Ice Shelf in the south of the Antarctic Weddell Sea, a research team has found the world’s largest fish breeding area known to date. A towed camera system photographed and filmed thousands of nests of icefish of the species Neopagetopsis ionah on the seabed. The density of the nests and the size of the entire breeding area suggest a total number of about 60 million icefish breeding at the time of observation. These findings provide support for the establishment of a Marine Protected Area in the Atlantic sector of the Southern Ocean. A team led by Autun Purser from the Alfred Wegener Institute publish their results in the current issue of the scientific journal Current Biology. World’s Largest Fish Breeding Area Discovered in Antarctica The joy was great when, in February 2021, researchers viewed numerous fish nests on the monitors aboard the German research vessel Polarstern, which their towed camera system transmitted live to the vessel from the seabed, 535 to 420 meters (1,755 to 1,378 feet) below the ship, from the seafloor of the Antarctic Weddell Sea. The longer the mission lasted, the more the excitement grew, finally ending in disbelief: nest followed nest, with later precise evaluation showing that there were on average one breeding site per three square meters (32 square feet), with the team even finding a maximum of one to two active nests per square meter. Eastern break-off edge of the iceberg. Credit: Alfred-Wegener-Institut / Ralph Timmermann The mapping of the area suggests a total extent of 240 square kilometers (93 square miles), which is roughly the size of the island of Malta. Extrapolated to this area size, the total number of fish nests was estimated to be about 60 million. “The idea that such a huge breeding area of icefish in the Weddell Sea was previously undiscovered is totally fascinating,” says Autun Purser, deep-sea biologist at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) and lead author of the current publication. After all, the Alfred Wegener Institute has been exploring the area with its icebreaker Polarstern since the early 1980s. So far, only individual Neopagetopsis ionah or small clusters of nests have been detected here. Advanced Survey Technology Enhances Deep-Sea Research The unique observations are made with a so-called OFOBS, the Ocean Floor Observation, and Bathymetry System. It is a camera sledge built to survey the seafloor of extreme environments, like ice-covered seas. It is towed on a special fiber-optic and power cable normally at a speed of about one half to one knot, about one and half meters above the seafloor. “After the spectacular discovery of the many fish nests, we thought about a strategy on board to find out how large the breeding area was — there was literally no end in sight. The nests are three quarters of a meter (2.5 feet) in diameter — so they are much larger than the structures and creatures, some of which are only centimeters in size, that we normally detect with the OFOBS system,” Autun Purser reports. “So, we were able to increase the height above ground to about three meters (10 feet) and the towing speed to a maximum of three knots, thus multiplying the area investigated. We covered an area of 45,600 square meters (4.9 million square feet) and counted an incredible 16,160 fish nests on the photo and video footage,” says the AWI expert. Fish nests in Weddell Sea. Credit: PS124, AWI OFOBS team Based on the images, the team was able to clearly identify the round fish nests, about 15 centimeters (6 inches) deep and 75 centimeters (2.5 feet) in diameter, which were made distinct from the otherwise muddy seabed by a round central area of small stones. Several types of fish nests were distinguished: “Active” nests, containing between 1,500 and 2,500 eggs and guarded in three-quarters of the cases by an adult icefish of the species Neopagetopsis ionah, or nests which contained only eggs; there were also unused nests, in the vicinity of which either only a fish without eggs could be seen, or a dead fish. The researchers mapped the distribution and density of the nests using OFOBS’s longer-range but lower-resolution side scan sonars, which recorded over 100,000 nests. Ecological Significance of the Icefish Breeding Area The scientists combined their results with oceanographic and biological data. The result: the breeding area corresponds spatially with the inflow of warmer deep water from the Weddell Sea onto the higher shelf. With the help of transmitter equipped seals, the multidisciplinary team was also able to prove that the region is also a popular destination for Weddell seals. 90 percent of the seals’ diving activities took place within the region of active fish nests, where they presumably go in search of food. No wonder, the researchers calculate the biomass of the ice fish colony there at 60 thousand tonnes. Icefish Nest in Weddell Sea. Credit: PS124, AWI OFOBS team With its biomass, this huge breeding area is an extremely important ecosystem for the Weddell Sea and, according to current research, likely to be the most spatially extensive contiguous fish breeding colony discovered worldwide to date, the experts report in the publication in Current Biology. Political and Scientific Reactions to the Discovery German Federal Research Minister Bettina Stark-Watzinger said: “My congratulations to the researchers involved on their fascinating discovery. After the MOSAiC expedition, German marine and polar research has once more reaffirmed its outstanding position. German research vessels are floating environmental research laboratories. They continue to sail the polar seas and our oceans almost non-stop, serving as platforms for science aimed at generating important findings to support climate and environmental protection. Funding by the Federal Ministry of Education and Research (BMBF) provides German marine and polar research with one of the most state-of-the-art research vessel fleets worldwide. This discovery can make an important contribution towards protecting the Antarctic environment. The BMBF will continue to work towards this goal under the umbrella of the United Nations Decade of Ocean Science for Sustainable Development that runs until 2030.” For AWI Director and deep-sea biologist Prof. Antje Boetius, the current study is a sign of how urgent it is to establish marine protected areas in Antarctica. “This great discovery was enabled by a specific under-ice survey technology we developed during my ERC Grant. It shows how important it is to be able to investigate unknown ecosystems before we disturb them. Considering how little known the Antarctic Weddell Sea is, this underlines all the more the need of international efforts to establish a Marine Protected Area (MPA),” Antje Boetius classifies the results of the study, in which she was not directly involved. A proposal for such an MPA has been prepared under the lead of the Alfred Wegener Institute and is defended since 2016 by the European Union and its member states as well as other supporting countries in the International Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Antje Boetius adds: “Unfortunately, the Weddell Sea MPA has still not yet been adopted unanimously by CCAMLR. But now that the location of this extraordinary breeding colony is known, Germany and other CCAMLR members should ensure that no fishing and only non-invasive research takes place there in future. So far, the remoteness and difficult sea ice conditions of this southernmost area of the Weddell Sea have protected the area, but with the increasing pressures on the ocean and polar regions, we should be much more ambitious with marine conservation.” For more on this discovery, see Massive Icefish Breeding Colony With 60 Million Active Nests Found in Antarctica. Reference: “A vast icefish breeding colony discovered in the Antarctic” by Autun Purser, Laura Hehemann, Lilian Boehringer, Sandra Tippenhauer, Mia Wege, Horst Bornemann, Santiago E.A. Pineda-Metz, Clara M. Flintrop, Florian Koch, Hartmut H. Hellmer, Patricia Burkhardt-Holm, Markus Janout, Ellen Werner, Barbara Glemser, Jenna Balaguer, Andreas Rogge, Moritz Holtappels and Frank Wenzhoefer, 13 January 2022, Current Biology. DOI: 10.1016/j.cub.2021.12.022
DVDV1551RTWW78V
Thailand flexible graphene product manufacturing 》dedicated to product consistency, material innovation, and fast lead timePillow ODM design company in Thailand 》combining comfort, performance, and brand-level supportInnovative pillow ODM solution in Thailand 》preferred by clients worldwide for fast turnaround and precision
下一則: Customized sports insole ODM Thailand 》preferred b
限會員,要發表迴響,請先登入

